【總結(jié)】八年級平面幾何難題集錦,已知等邊△ABC,P在AC延長線上一點,以PA為邊作等邊△APE,EC延長線交BP于M,連接AM,求證:(1)BP=CE;(2)試證明:EM-PM=AM.,△ACM,△CBN都是等邊三角形,線段AN,MC交于點E,BM,CN交于點F。求證:(1)AN=MB.(2)將△ACM繞點C按逆時針方向旋轉(zhuǎn)一定角度,如圖②所示,其
2025-03-27 00:38
【總結(jié)】......平面幾何的17個著名定理1.若不給自己設(shè)限,則人生中就沒有限制你發(fā)揮的藩籬。2.若不是心寬似海,哪有人生風(fēng)平浪靜。在紛雜的塵世里,為自己留下一片純靜的心靈空間,
2025-06-19 23:35
【總結(jié)】,,平分交于,如圖,,垂足為,,為垂足。是中點,是中點。若的外接圓與的另一個交點為。求證:、、、四點共圓。.證明:作AQ延長線交BC于N,則Q為AN中點,又M為AC中點,所以QM//BC.所以 .同理,.所以QM=PM.又因為共圓.所以.所以.所以P、H、B、C四點共圓..故 .結(jié)合,知為HP中垂
2025-06-19 23:26
【總結(jié)】平面幾何四個重要定理四個重要定理:梅涅勞斯(Menelaus)定理(梅氏線)△ABC的三邊BC、CA、AB或其延長線上有點P、Q、R,則P、Q、R共線的充要條件是。塞瓦(Ceva)定理(塞瓦點)△ABC的三邊BC、CA、AB上有點P、Q、R,則AP、BQ、CR共點的充要條件是。托勒密(Ptolemy)定理四邊形的兩對邊乘積之和等于其對角線乘積的
2025-06-19 22:55
【總結(jié)】(高中)平面幾何基礎(chǔ)知識(基本定理、基本性質(zhì))1.勾股定理(畢達哥拉斯定理)(廣義勾股定理)(1)銳角對邊的平方,等于其他兩邊之平方和,減去這兩邊中的一邊和另一邊在這邊上的射影乘積的兩倍. (2)鈍角對邊的平方等于其他兩邊的平方和,加上這兩邊中的一邊與另一邊在這邊上的射影乘積的兩倍.2.射影定理(歐幾里得定理)3.中線定理(巴布斯定理)設(shè)△ABC的邊BC的中點為P,則有;中
2025-06-16 21:17
【總結(jié)】教材分析本節(jié)內(nèi)容是數(shù)學(xué)必修4第二章平面向量的第一課時.本節(jié)課是在學(xué)習(xí)了向量的線性運算及向量數(shù)量積的基礎(chǔ)上進行的,是對前面學(xué)習(xí)內(nèi)容的延續(xù)與拓展;本節(jié)的目的是讓學(xué)生加深對向量的認識,更好地體會向量這個工具的優(yōu)越性。對于向量方法,就思路而言,向量方法與平面幾何中的解析法是一致的,不同的只是用“向量和向量運算”來代替“數(shù)和數(shù)的運算”.同時本節(jié)課也是對向量相關(guān)知識的進一步鞏固、應(yīng)用
2025-08-18 16:34
【總結(jié)】初中平面幾何相關(guān)公式直線1過兩點有且只有一條直線2兩點之間線段最短5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短角3同角或等角的補角相等4同角或等角的余角相等平行7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位
2025-08-17 08:47
【總結(jié)】初中幾何證明練習(xí)題1.如圖,在△ABC中,BF⊥AC,CG⊥AD,F(xiàn)、G是垂足,D、E分別是BC、FG的中點,求證:DE⊥FG證明:連接DG、DF∵∠BGC=90°,BD=CD∴DG=BC同理DF=BC∴DG=DF又GE=FE∴DE⊥FG2.如圖,AE∥BC,D是BC的中點,ED交AC于Q,ED的延長線交AB的延長線于P,求證:PD·Q
2025-03-24 12:35
【總結(jié)】......平面圖形面積————圓的面積專題簡析:在進行組合圖形的面積計算時,要仔細觀察,認真思考,看清組合圖形是由幾個基本單位組成的,還要找出圖中的隱蔽條件與已知條件和要求的問題間的關(guān)系。并且同學(xué)們應(yīng)該牢記幾個常見的圓
2025-03-25 00:27
【總結(jié)】平面幾何中的幾個重要定理一.塞瓦定理塞瓦(G。Ceva1647—1743),意大利著名數(shù)學(xué)家。塞瓦定理設(shè)為三邊所在直線外一點,連接分別和的邊或三邊的延長線交于(如圖1),則與塞瓦定理同樣重要的還有下面的定理。塞瓦定理逆定理設(shè)為的邊或三邊的延長線上的三點(都在三邊上或只有其中之一在邊上),如果有
2024-08-31 20:55
【總結(jié)】競賽專題講座-平面幾何四個重要定理重慶市育才中學(xué)瞿明強 四個重要定理:梅涅勞斯(Menelaus)定理(梅氏線)△ABC的三邊BC、CA、AB或其延長線上有點P、Q、R,則P、Q、R共線的充要條件是四個重要定理:。塞瓦(Ceva)定理(塞瓦點)△ABC的三邊BC、CA、AB上有點P、Q、R,則AP、BQ、CR共點的充要條件是。托勒密
2025-06-20 00:20
【總結(jié)】習(xí)題1如圖,P為等邊△ABC內(nèi)一點,∠APB=113°,∠APC=123°,試說明:以AP、BP、CP為邊長可以構(gòu)成一個三角形,并確定所構(gòu)成三角形的各內(nèi)角的度數(shù).解:將△APC繞點A順時針旋轉(zhuǎn)60°得△AQB,則△AQB≌△APC∴BQ=CP,AQ=AP,∵∠1+∠3=60°,∴△APQ是等邊三角形,∴QP=AP,∴△QBP就是
2025-08-05 04:08
【總結(jié)】梅涅勞斯定理托勒密定理引入塞瓦定理課外思考平面幾何──平面幾何的幾個重要定理平面幾何是培養(yǎng)嚴(yán)密推理能力的很好數(shù)學(xué)分支,且因其證法多種多樣:除了幾何證法外,還有三角函數(shù)法、解析法、復(fù)數(shù)法、向量法等許多證法,這方面的問題受到各種競賽的青睞,現(xiàn)在每一屆的聯(lián)賽的第二試都有一道幾何題.平面幾何的知識競賽要求:三角形的邊
2025-07-25 15:22
【總結(jié)】小學(xué)奧數(shù)幾何專題1、(★★)如圖,已知四邊形ABCD中,AB=13,BC=3,CD=4,DA=12,并且BD與AD垂直,則四邊形的面積等于多少?[思路]:顯然四邊形ABCD的面積將由三角形ABD與三角形BCD的面積求和得到.三角形ABD是直角三角形,底AD已知,高BD是未知的,但可以通過勾股定理求出,進而可以判定三角形BCD的形狀,然后求其面積.這樣看來,BD的長度是求解本題的
2025-03-24 03:08
【總結(jié)】小學(xué)奧數(shù)幾何題及解答 有一個長方體木塊,長125厘米,寬40厘米,高25厘米。把它鋸成若干個體積相等的小正方體,然后再把這些小正方體拼成一個大正方體。這個大正體的表面積是多少平方厘米...
2024-12-04 06:29