freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

自動(dòng)化專業(yè)外文翻譯---步進(jìn)電機(jī)的振蕩、不穩(wěn)定以及控制(已改無錯(cuò)字)

2023-07-05 18:44:19 本頁面
  

【正文】 due to the nonlinearity of the motor), for the purposes of this paper we can assume the supply voltages are sinusoidal. Under this assumption, we can get vq and vd as follows vq = Vmcos(Nδ) , vd = Vmsin(Nδ) , where Vm is the maximum of the sine wave. With the above equation, we have changed the input voltages from a function of time to a function of state, and in this way we can represent the dynamics of the motor by a autonomous system, as shown below. This will simplify the mathematical analysis. From Equations (5), (7), and (8), the statespace model of the motor can be written in a matrix form as follows ? = F(X,u) = AX + Fn(X) + Bu , (10) where X D Tiq id ! _UT , u D T!1 TlUT is defined as the input, and !1 D N!0 is the supply frequency. The input matrix B is defined by The matrix A is the linear part of , and is given by 咸寧學(xué)院本科畢業(yè)論文(設(shè)計(jì)):外文翻譯 , and is given by The input term u is independent of time, and therefore Equation (10) is autonomous. There are three parameters in 。u/, they are the supply frequency !1, the supply voltage magnitude Vm and the load torque Tl . These parameters govern the behaviour of the stepper motor. In practice, stepper motors are usually driven in such a way that the supply frequency !1 is changed by the mand pulse to control the motor’s speed, while the supply voltage is kept constant. Therefore, we shall investigate the effect of parameter !1. 3. Bifurcation and MidFrequency Oscillation By setting ! D !0, the equilibria of Equation (10) are given as 咸寧學(xué)院本科畢業(yè)論文(設(shè)計(jì)):外文翻譯 and 39。 is its phase angle defined by φ = arctan(ω1L1/R) . (16) Equations (12) and (13) indicate that multiple equilibria exist, which means that these equilibria can never be globally stable. One can see that there are two groups of equilibria as shown in Equations (12) and (13). The first group represented by Equation (12) corresponds to the real operating conditions of the motor. The second group represented by Equation (13) is always unstable and does not relate to the real operating conditions. In the following, we will concentrate on the equilibria represented by Equation (12). 咸寧學(xué)院本科畢業(yè)論文(設(shè)計(jì)):外文翻譯 步進(jìn)電機(jī)的振蕩、不穩(wěn)定以及控制 摘要: 本文介紹了一種分析永磁步進(jìn)電機(jī)不穩(wěn)定性的新穎方法。結(jié)果表明,該種電機(jī)有兩種類型的不穩(wěn)定現(xiàn)象:中頻振蕩和高頻不穩(wěn)定性。非線性分叉理論是用來說明局部不穩(wěn)定和中頻振蕩運(yùn)動(dòng)之間的關(guān)系。一種新型的分析介紹了被確定為高頻不穩(wěn)定性的同步損耗現(xiàn)象。在相間分界線和吸引子的概念被用于導(dǎo)出數(shù)量來評(píng)估高頻不穩(wěn)定性。通過使用這個(gè)數(shù)量就可以很容易地估計(jì)高頻供應(yīng)的穩(wěn)定性。此外,還介紹了穩(wěn)定性理論。廣義的方法給出了基于反饋理論的穩(wěn)定問題的分析。結(jié)果表明,中頻穩(wěn)定度和高頻穩(wěn)定度可以提高狀態(tài)反饋。 關(guān)鍵詞 :步進(jìn)電機(jī);不穩(wěn)定;非線性;狀態(tài)反饋 1. 介紹 步進(jìn)電機(jī)是將數(shù)字脈沖輸入轉(zhuǎn)換為模擬角度輸出的電磁增量運(yùn)動(dòng)裝置。其內(nèi)在的步進(jìn)能力允許沒有反饋的精確位置控制。 也就是說,他們可以在開環(huán)模式下跟蹤任何步階位置,因此執(zhí)行位置控制是不需要任何反饋的。步進(jìn)電機(jī)提供比直流電機(jī)每單位更高的峰值扭矩 。此外,它們是 無電刷電機(jī) ,因此需要較少的維護(hù)。 所有這些特性使得步進(jìn)電機(jī)在許多位置和速度控制系統(tǒng)的選擇中非常具有吸引力,例如如在計(jì)算機(jī)硬盤驅(qū)動(dòng)器和打印機(jī),代理表,機(jī)器人中的應(yīng)用等 . 盡管步進(jìn)電機(jī)有許多突出的特性,他們?nèi)栽馐苷袷幓虿环€(wěn)定現(xiàn)象。這種現(xiàn)象嚴(yán)重地限制其開環(huán)的動(dòng)態(tài)性能和需要高速運(yùn)作的適用領(lǐng)域。 這種振蕩通常在步進(jìn)率低于 1000脈沖 /秒的時(shí)候發(fā)生,并已被確認(rèn)為中頻不穩(wěn)定或局部不穩(wěn)定 [1],或者動(dòng)態(tài)不穩(wěn)定 [2]。此外,步進(jìn)電機(jī)還有另一種不穩(wěn)定現(xiàn)象,也就是在步進(jìn)率較高時(shí),即使 負(fù)荷扭矩 小于其牽出扭矩,電動(dòng)機(jī)也常常不同步。 該文中將 這種現(xiàn)象確定為高頻不穩(wěn)定性,因?yàn)樗员仍谥蓄l振蕩現(xiàn)象中發(fā)生的頻率更高的頻率出現(xiàn)。高頻不穩(wěn)定性不像中頻不穩(wěn)定性那樣被廣泛接受,而且還沒有一個(gè)方法來評(píng)估 它。 中頻振蕩 已經(jīng)被廣泛地認(rèn)識(shí)了很長一段時(shí)間,但是,一個(gè)完整的了解還沒有牢固確立。這可以歸因于支配振蕩現(xiàn)象的非線性是相當(dāng)困難處理的。大多數(shù)研究人員在線性模型基礎(chǔ)上分析它 [1]。盡管在許多情況下,這種處理方法是有效的或有益的,但為了更好地描述這一復(fù)雜的現(xiàn)象,在非線性理論基礎(chǔ)上的處理方法也是需要的。例如,基于線性模型只能看到電動(dòng)機(jī)在某些供應(yīng)頻率下轉(zhuǎn)向局部不穩(wěn)定,并不能使被觀測的振蕩現(xiàn)象更多深入。事實(shí)上,除非有人利用非線性理論,否則振蕩不能評(píng)估。 因此,在非線性動(dòng)力學(xué)上利用被發(fā)展的數(shù)學(xué)理論處理振蕩或不穩(wěn)定是很 重要的。值得指出的是, Taft和 Gauthier[3],還有 Taft和 Harned[4]使用 的諸如在振蕩和不穩(wěn)定現(xiàn)象的分析中的極限環(huán)和分界線之類的數(shù)學(xué)概念 ,并取得了關(guān)于所謂
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1