【摘要】課時(shí)目標(biāo):1、了解空間動(dòng)點(diǎn)集合的類型2、探索“動(dòng)點(diǎn)問(wèn)題”的解題思路問(wèn)題一:動(dòng)點(diǎn)P滿足如下條件時(shí)圓橢圓雙曲線拋物線直線球面平面內(nèi)到定點(diǎn)距離等于定長(zhǎng)平面內(nèi)到兩定點(diǎn)距離之和為定值(大于定點(diǎn)間的距離)平面內(nèi)到兩定點(diǎn)距離之差的絕對(duì)值為定值(小于定點(diǎn)間的距離)
2024-08-24 10:16
【摘要】幾何定值和極值1.幾何定值問(wèn)題(1)定量問(wèn)題:解決定量問(wèn)題的關(guān)鍵在探求定值,一旦定值被找出,就轉(zhuǎn)化為熟悉的幾何證明題了。探求定值的方法一般有運(yùn)動(dòng)法、特殊值法及計(jì)算法。(2)定形問(wèn)題:定形問(wèn)題是指定直線、定角、定向等問(wèn)題。在直角坐標(biāo)平面上,定點(diǎn)可對(duì)應(yīng)于有序數(shù)對(duì),定向直線可以看作斜率一定的直線,實(shí)質(zhì)上這些問(wèn)題是軌跡問(wèn)題。2.幾何極值問(wèn)題:最常見(jiàn)的
2025-04-08 12:12
【摘要】利用空間向量解立體幾何問(wèn)題2、例2已知三角形的頂點(diǎn)是,,,試求這個(gè)三角形的面積。分析:可用公式來(lái)求面積解:∵,,∴,,,∴,∴所以,.1、綜述(1)由于任意兩個(gè)空間向量都可以轉(zhuǎn)化為平面向量,所以空間兩個(gè)向量的夾角的定義和取值范圍、兩個(gè)向量垂直的定義和符號(hào)、兩個(gè)空間向量的數(shù)量積等等,都與平面向量相同。(2)利用空間向量解題的方法有2類:(i)利
2025-06-22 16:39
【摘要】立體幾何中的共點(diǎn)、共線、共面問(wèn)題一、共線問(wèn)題例1.若ΔABC所在的平面和ΔA1B1C1所在平面相交,并且直線AA1、BB1、CC1相交于一點(diǎn)O,求證:(1)AB和A1B1、BC和B1C1、AC和A1C1分別在同一平面內(nèi);(2)如果AB和A1B1、BC和B1C1、AC和A1C1分別相交,那么交點(diǎn)在同一直線上(如圖).例2.點(diǎn)P、Q、R分別在三棱錐A-BCD的三
2025-04-09 06:43
【摘要】解析幾何中的幾類定值問(wèn)題浙江省諸暨中學(xué)邵躍才311800求定值是解析幾何中頗有難度的一類問(wèn)題,由于它在解題之前不知道定值的結(jié)果,因而更增添了題目的神秘色彩。解決這類問(wèn)題時(shí),要善于運(yùn)用辯證的觀點(diǎn)去思考分析,在動(dòng)點(diǎn)的“變”中尋求定值的“不變”性,用特殊探索法(特殊值、特殊位置、特殊圖形等)先確定出定值,揭開(kāi)神秘的面紗,這樣可將盲目的探索問(wèn)題轉(zhuǎn)化為有方向有目標(biāo)的一般性證明題,從而找到解
2024-10-14 17:25
【摘要】利用空間向量解決立體幾何問(wèn)題一:利用空間向量求空間角(1)兩條異面直線所成的夾角范圍:兩條異面直線所成的夾角的取值范圍是。向量求法:設(shè)直線的方向向量為,其夾角為,則有1.在正三棱柱ABC-A1B1C1,若AB=BB1,則AB1與C1B所成角的大小( )A.60° B.90°C.105°
2025-06-22 16:29
【摘要】立體幾何專題之二面角問(wèn)題北京大學(xué)光華管理學(xué)院何洋立體幾何高考情況簡(jiǎn)述2022年2022年2022年文科理科文科理科文科理科選擇題222222填空題111110解答題111111二面角問(wèn)題高考情況簡(jiǎn)述?除2022年北京
2025-08-04 07:01
【摘要】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2024-11-12 12:11
【摘要】專題四立體幾何/1/.ABCDABEFABMACNFBAMFNMNBCE???兩個(gè)全等的正方形和所在平面相交于,,,且,求證:平面例()//()()//?解決本題的關(guān)鍵在于找出平面內(nèi)的一條直線
2025-08-02 00:17
【摘要】;菲華論壇;在西墎城,要小心壹點(diǎn).壹旦有人對(duì)付烈焰,你就立刻帶著所有烈焰の人,進(jìn)入鞠氏宅院.”鞠言對(duì)高鳳說(shuō)道.“嗯,俺明白.”高鳳點(diǎn)頭.她也想跟著鞠言壹起走,但是,她不能將整個(gè)烈焰商會(huì)扔下.至于帶著烈焰の所有人跟鞠言走,那就更不可能了.“事不宜遲,鞠言,俺們立刻返回藍(lán)曲郡城.”鄒尚云揮手說(shuō)道.兩人當(dāng)即,便離開(kāi)西墎
2024-08-23 23:24
【摘要】1用空間向量處理立體幾何的問(wèn)題立體幾何著重的是研究點(diǎn)、線、面之間的關(guān)系,研究空間三種位置關(guān)系(即空間直線與直線、直線與平面、平面與平面)以及三種角(異面直線所成的角、直線與平面所成的角和二面角)的計(jì)算。自上海高考試卷內(nèi)容改革以來(lái),純粹用立體幾何的公理、定理來(lái)證明或計(jì)算立體幾何問(wèn)題越來(lái)越少,而借助于向量的計(jì)算方法來(lái)處理立體幾何的問(wèn)題卻越來(lái)越多。本講座就是詳細(xì)
2024-09-25 17:12
【摘要】第一篇:立體幾何中不等式問(wèn)題的證明方法 例談立體幾何中不等式問(wèn)題的證明方法 立體幾何中的不等式問(wèn)題具有很強(qiáng)的綜合性,解決這類問(wèn)題既要有較強(qiáng)的空間想象能力,又要有嚴(yán)密的邏輯思維能力,因此有一定的難度...
2024-11-12 12:34
【摘要】秭歸縣屈原高中張鴻斌專題立幾問(wèn)題的向量解法高考復(fù)習(xí)建議傳統(tǒng)的立幾問(wèn)題是用立幾的公理和定理通過(guò)從“形”到“式”的邏輯推理,解決線與線、線與面、面與面的位置關(guān)系以及幾何體的有關(guān)問(wèn)題,常需作輔助線,但有時(shí)卻不易作出,而空間向量解立幾問(wèn)題則體現(xiàn)了“數(shù)”與“形”的結(jié)合,通過(guò)向量的代數(shù)計(jì)算解決問(wèn)題,無(wú)須添加輔助線。用空間向量解立幾問(wèn)題
2024-11-29 12:27
【摘要】一輪復(fù)習(xí)之立體幾何姓名一輪復(fù)習(xí)之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為上一點(diǎn),且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2025-08-08 12:16
【摘要】空間向量的引入為代數(shù)方法處理立體幾何問(wèn)題提供了一種重要的工具和方法,解題時(shí),可用定量的計(jì)算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問(wèn)題,也是高考的熱點(diǎn)之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問(wèn)題。建立空間直角坐標(biāo)系,解立體幾何題1122330???abab
2024-11-29 01:53