【摘要】二次函數(shù)y=ax2+bx+c圖象和性質(zhì)(4)xyoy=ax2y=ax2+ky=a(x–h)2y=a(x–h)2+k上下平移左右平移上下平移左右平移在上述移動中圖象的開口方向、形狀、頂點坐標(biāo)、對稱軸,哪些有變化?哪些沒有變化?有變化的:拋
2024-12-10 23:47
【摘要】二次函數(shù)y=a(x-h)2+k的圖象及其性質(zhì)1說出下列函數(shù)圖象的開口方向,對稱軸,頂點,最值和增減變化情況:1)y=ax22)y=ax2+c3)y=a(x-h)2將拋物線y=ax2沿y軸方向平移c個單位,得拋物線
2024-12-11 02:34
【摘要】二次函數(shù)的圖像【學(xué)習(xí)目標(biāo)】1、會做函數(shù)y=ax2和y=ax2+c的圖象,并能比較它們的異同;理解a,c對二次函數(shù)圖象的影響,能正確說出兩函數(shù)的開口方向,對稱軸和頂點坐標(biāo);2、了解拋物線y=ax2上下平移規(guī)律;3、熟練掌握二次函數(shù)的性質(zhì);4、應(yīng)用二次函數(shù)解決實際問題?!局饕拍睢俊?】二次函數(shù)的圖像二次函數(shù)的圖像是一條關(guān)于對稱的曲線
2025-05-31 02:58
【摘要】二次函數(shù)的圖像與性質(zhì)一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)?!菊f明】這里需要強調(diào):和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項.二、二次函數(shù)的基本形式1
2025-04-08 06:26
【摘要】的圖象與性質(zhì)h)-a(xy2?y=ax2+ka0a0圖象開口對稱性頂點增減性回顧:二次函數(shù)y=ax2+k的性質(zhì)開口向上開口向下|a|越大,開口越小關(guān)于y軸對稱頂點是最低點頂點是最高點當(dāng)x0時,y隨x的增大而減小
2024-12-12 02:30
【摘要】二次函數(shù)的應(yīng)用回顧:二次函數(shù)y=ax2+bx+c的性質(zhì)y=ax2+bx+c(a≠0)a0a0開口方向頂點坐標(biāo)對稱軸增減性極值向上向下在對稱軸的左側(cè),y隨著x的增大而減小。在對稱軸的右側(cè),y隨著x的增大而增大。在對稱軸的左側(cè),y隨著x的增
2024-12-12 04:09
【摘要】k的圖象與性質(zhì)axy2??y=ax2(a≠0)a0a0時,
【摘要】專題四二次函數(shù)的圖像與性質(zhì)(一)【知識梳理】1.一般地,形如_______的函數(shù)叫做二次函數(shù),當(dāng)a_______,b________時,是一次函數(shù).2.二次函數(shù)y=ax2+bx+c的圖象是_______,對稱軸是_______,頂點坐標(biāo)是_______.3.拋物線的開口方向由a確定,當(dāng)a0時,開口_______;當(dāng)a0時,開口_______;越
2025-04-08 05:53
【摘要】的圖象與性質(zhì)axy2?二次函數(shù)的定義:函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)叫做x的二次函數(shù)思考:你認(rèn)為判斷二次函數(shù)的關(guān)鍵是什么?判斷一個函數(shù)是否是二次函數(shù)的關(guān)鍵是:看二次項的系數(shù)是否為0.練習(xí):若函數(shù)y=(m2+3m-4)x2+(m+2)x+3m是x的二次函數(shù),則m______探究1:
2024-12-11 04:29
【摘要】y=ax2+bx+c的圖象與性質(zhì)回顧:二次函數(shù)y=a(x-h)2+k的性質(zhì)y=a(x-h)2+k(a≠0)a0ah時
【摘要】二次函數(shù)的圖像和性質(zhì)中考復(fù)習(xí)賀蘭四中主講教師李春桃1、二次函數(shù)的概念2、二次函數(shù)的圖形和性質(zhì)一、知識回顧?填表:想一想,填一填,比一比,說一說:函數(shù)表達(dá)式開口方向增減性對稱軸頂點坐標(biāo)2axy?caxy??2??2hxay??cbxaxy?
【摘要】y=ax2(a≠0)a0a0時,y隨著x的增大而增大。
2024-12-21 00:58
【摘要】——培根二次函數(shù)的圖像與性質(zhì)(2)22yxyx???與的圖象一樣嗎?它們有什么相同點?不同點?22yxyx???與這兩種呢?有沒有其他形式的二次函數(shù)?學(xué)習(xí)目標(biāo)?y=ax2和y=ax2+c的圖象,能說出它們圖象的開口方向、對稱軸、頂點坐標(biāo);并能夠比較它們圖象的異同,理解a與c對
2024-12-14 16:57
【摘要】1二次函數(shù)的圖像與性質(zhì)一、基礎(chǔ)知識1、二次函數(shù)的三種形式:一般式:)0,(2???acbaxy為常數(shù),且頂點式:;交點式:.)0()(2????akhxay)(21?x2、一般地,拋物線與的形狀相同,向上(下)向左(右)kxy2)(y?平移,可得到拋物線.平移的方向、距離要根據(jù),拋
2025-07-01 00:32
【摘要】二次函數(shù)的圖像與性質(zhì)一、二次函數(shù)的基本形式1.二次函數(shù)基本形式:的性質(zhì):a的絕對值越大,拋物線的開口越小。的符號開口方向頂點坐標(biāo)對稱軸性質(zhì)向上軸時,隨的增大而增大;時,隨的增大而減小;時,有最小值.向下軸時,隨的增大而減小;時,隨的增大而增大;時,有最大值.2.的性質(zhì):上加
2025-05-01 13:11