【摘要】菜單課后作業(yè)典例探究·提知能自主落實(shí)·固基礎(chǔ)高考體驗(yàn)·明考情新課標(biāo)·文科數(shù)學(xué)(安徽專用)第四節(jié)基本不等式菜單課
2025-01-21 16:33
【摘要】基本不等式:第1課時(shí)基本不等式1.理解并掌握基本不等式及其推導(dǎo)過程,明確基本不等式成立的條件.2.能利用基本不等式求代數(shù)式的最值.121.重要不等式當(dāng)a,b是任意實(shí)數(shù)時(shí),有a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時(shí),等號成立.(1)公式中a,b的取值是
2024-12-07 19:03
【摘要】不等式復(fù)習(xí)學(xué)案班級學(xué)號姓名【課前預(yù)習(xí)】x的不等式2240mxx???的解集為??12xx???,則實(shí)數(shù)m的值為.2.設(shè)集合??2340,AxxxxR?
2024-12-10 01:07
【摘要】基本不等式的應(yīng)用課時(shí)目標(biāo);(小)值問題.1.設(shè)x,y為正實(shí)數(shù)(1)若x+y=s(和s為定值),則當(dāng)______時(shí),積xy有最____值,且這個(gè)值為________.(2)若xy=p(積p為定值),則當(dāng)______時(shí),和x+y有最____值,且這個(gè)值為______.2.利用
2024-12-25 10:12
【摘要】課題:一元二次不等式(2)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】掌握一元二次不等式的解法;進(jìn)一步理解三個(gè)一元二次不等式,一元二次方程和二次函數(shù)之間的關(guān)系;會解一些簡單的含參數(shù)的不等式.【課前預(yù)習(xí)】1.如何解一元二次不等式02???cbxax與02???
2024-12-10 01:05
【摘要】第2課時(shí)基本不等式【課標(biāo)要求】1.理解并掌握定理1、定理2,會用兩個(gè)定理解決函數(shù)的最值或值域問題.2.能運(yùn)用平均值不等式(兩個(gè)正數(shù)的)解決某些實(shí)際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點(diǎn))2.實(shí)際應(yīng)用中的最值問題通常轉(zhuǎn)化為y=ax+bx
2025-08-07 17:21
【摘要】基本不等式的證明1教學(xué)目標(biāo)知識與技能.,會用多種方法證明基本不等式.,并掌握基本不等式中取等號的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等[過程與方法情感態(tài)度與價(jià)值觀教學(xué)重難點(diǎn)
2024-12-25 09:29
【摘要】基本不等式【學(xué)習(xí)目標(biāo)】ab?2ba?的證明方法,要求學(xué)生掌握算術(shù)平均數(shù)與幾何平均數(shù)的意義,并掌握“均值不等式”及其推導(dǎo)過程。.【學(xué)習(xí)重難點(diǎn)】理解利用基本不等式ab?2ba?求函數(shù)的最值問題【類法通解】1.利用基本不等式求最值,必須按照“一正,二定,三相等”的原則,即(1)一正:符合基
2024-12-13 12:48
【摘要】專題基本不等式編者:高成龍專題基本不等式【一】基礎(chǔ)知識基本不等式:(1)基本不等式成立的條件:;(2)等號成立的條件:當(dāng)且僅當(dāng)時(shí)取等號.(1);(2);【二】例題分析【模塊1】“1”的巧妙替換【例1】已知,且,則的最小值為
2024-08-24 19:27
【摘要】高中數(shù)學(xué)必修五基本不等式題型(精編)變2.下列結(jié)論正確的是()A.若,則B.若,則C.若,,則D.若,則3.若m=(2a-1)(a+2),n=(a+2)(a-3),則m,n的大小關(guān)系正確的是例2、解下列不等式(1)
2025-04-19 05:12
【摘要】第5課時(shí)基本不等式,能借助幾何圖形說明基本不等式的意義.(小)值.“一正二定三相等”.問題1上述情境中,正方形的面積為,4個(gè)直角三角形的面積的和,由于4個(gè)直角三角形的面積之和不大于正方形的面積,于是就可以得到一個(gè)不等式:,我們稱之為重要不等
2024-12-07 23:14
【摘要】均值不等式的綜合應(yīng)用22,0,,222abababBabababCDabABCD????????若A=,,,,試比較、、、的大小。CABD???一.均值定理在比較大小中的應(yīng)用:11,lglg,(lglg),2lg(
2024-12-08 08:48
【摘要】:2baab??復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號時(shí)取“當(dāng)當(dāng)且僅那么如果?????baabbaRba復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號時(shí)取“當(dāng)當(dāng)且僅那么如果?????baabbaRba;)(2,,)2
【摘要】§基本不等式2abab??教學(xué)目標(biāo):1、知識與技能目標(biāo):(1)掌握基本不等式2abab??,認(rèn)識其運(yùn)算結(jié)構(gòu);(2)了解基本不等式的幾何意義及代數(shù)意義;(3)能夠利用基本不等式求簡單的最值。2、過程與方法目標(biāo):(1)經(jīng)歷由幾何圖形抽象出基本不等式的過程;(2)體驗(yàn)數(shù)形結(jié)合思想。
2024-12-09 08:01
【摘要】基本不等式以培養(yǎng)學(xué)生探究精神為出發(fā)點(diǎn),著眼于知識的生成和發(fā)展,著眼于學(xué)生的學(xué)習(xí)體驗(yàn),設(shè)置問題,由淺入深、循序漸進(jìn),給不同層次的學(xué)生提供思考、創(chuàng)造和成功的機(jī)會。特進(jìn)行如下教學(xué)設(shè)計(jì):(一)設(shè)問激疑,創(chuàng)設(shè)情景展示北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),讓學(xué)生思考,圖案由哪些幾何圖形拼湊而成,由此你能否找到一些相等或不等關(guān)系?接著通過三個(gè)問題
2024-12-28 20:20