【摘要】第4課時導數(shù)在實際問題中的應用、用料最省、效率最高等優(yōu)化問題,體會導數(shù)在解決實際問題中的作用.,體會導數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性.飲料瓶大小對飲料公司利潤有何影響?下圖是某種品牌飲料的三種規(guī)格不同的產(chǎn)品,它們的價格如下表所示:規(guī)格(L)2價格(元)
2024-12-25 06:34
【摘要】PK!宻燾?[Content_Types].xml?(?
2024-12-25 06:36
【摘要】鞏固練習復數(shù)的運算法則復數(shù)加減運算的幾何意義問題引入復數(shù)的四則運算(一)我們知道實數(shù)有加、減、乘等運算,且有運算律:abba???abba?()()abcabc?????()()abcabc?
2024-12-08 08:46
【摘要】補充練習除法怎樣運算練習復習法則復習練習復數(shù)的四則運算(二)上節(jié)課,我們學習了復數(shù)的加、減、乘、運算.設(shè)12zabizcdiabcdR?????,(,,,)加法法則:()()()()abicdiacbdi???????
2024-12-07 23:31
【摘要】問題2練習鞏固問題1問題1解答復數(shù)的運算(三)問題1.我們知道,若zabi??()abR?、,則z的共軛復數(shù)為abi?.即zabi??且已經(jīng)證明有12121212,zzzzzzzz??????,1212zzzz???
【摘要】第2課時微積分基本定理..1664年秋,牛頓開始研究微積分問題,他反復閱讀笛卡兒《幾何學》,對笛卡兒求切線的“圓法”產(chǎn)生了濃厚的興趣并試圖尋找更好的方法,以前,面積總是被看成是無限小不可分量之和,牛頓則從確定面積的變化率入手,通過反微分計算面積.牛頓不僅揭示了面積計算與求切線的互逆關(guān)系,而且十分
2024-12-25 06:35
【摘要】第3課時定積分的簡單應用,并能利用積分公式表進行計算.,建立它的數(shù)學模型,并能利用積分公式表進行計算.,體會到微積分把不同背景的問題統(tǒng)一到一起的巨大作用和實用價值.實際生活中許多變量的變化是非均勻變化的,如非勻速直線運動在某時間段內(nèi)位移;變力使物體沿直線方向移動某位移區(qū)間段內(nèi)所做的功;非均勻
2024-12-09 20:36
【摘要】第四章§2理解教材新知把握熱點考向應用創(chuàng)新演練考點一考點二考點三知識點一知識點二知識點三知識點四已知復數(shù)z1=a+bi,z2=c+di(a,b,c,d∈R).問題1:多項式的加減實質(zhì)是合并同類項
2024-12-07 19:02
【摘要】第2課時復數(shù)代數(shù)形式的加減運算及其幾何意義..實數(shù)可以進行加減運算,并且具有豐富的運算律,其運算結(jié)果仍是實數(shù);多項式也有相應的加減運算和運算律;對于引入的復數(shù),其代數(shù)形式類似于一個多項式,當然它也應有加減運算,并且也有相應的運算律.問題1:依據(jù)多項式的加法法則,得到復數(shù)加法的運算法
2024-12-09 23:14
【摘要】§3計算導數(shù)雙基達標?限時20分鐘?1.曲線y=xn在x=2處的導數(shù)為12,則n等于().A.1B.2C.3D.4解析∵y′=n·xn-1,∴y′|x=2=n·2n-1=12.∴n=3.答案C2.若函數(shù)f(x)=3
2024-12-23 00:14
【摘要】§2導數(shù)的概念及其幾何意義導數(shù)的概念雙基達標?限時20分鐘?1.函數(shù)f(x)在x0處可導,則limh→0f?x0+h?-f?x0?h().A.與x0、h都有關(guān)B.僅與x0有關(guān),而與h無關(guān)C.僅與h有關(guān),而與x0無關(guān)D.與x0、h均無關(guān)答案B
【摘要】第1課時數(shù)系的擴充和復數(shù)的概念,體會實際需求與數(shù)學內(nèi)部的矛盾(數(shù)的運算規(guī)則、方程求根)在數(shù)系擴充過程中的作用,感受人類理性思維的作用以及數(shù)與現(xiàn)實世界的聯(lián)系.,能利用復數(shù)的有關(guān)概念對復數(shù)進行分類..,知道實軸、虛軸及各象限內(nèi)的點所對應的復數(shù)的特征;會用復平面內(nèi)的點和向量來表示復數(shù),體會復數(shù)與向量之間的關(guān)
【摘要】§導數(shù)的運算§常見函數(shù)的導數(shù)目的要求:(1)了解求函數(shù)的導數(shù)的流程圖,會求函數(shù)的導函數(shù)(2)掌握基本初等函數(shù)的運算法則教學內(nèi)容一.回顧函數(shù)在某點處的導數(shù)、導函數(shù)思考:求函數(shù)導函數(shù)的流程圖新授;求下列函數(shù)的導數(shù)(1)ykx
2024-12-10 00:29
【摘要】課題:空間向量的運算(二)學習目標:知識與技能:1、熟練掌握空間向量的數(shù)量積運算.2、能用空間向量的運算律解決簡單的立體幾何中的問題過程與方法:經(jīng)歷向量運算平面到空間推廣的過程,進一步掌握類比的數(shù)學思想方法.情感態(tài)度與價值觀:學會用發(fā)展的眼光看問題,認識事物是在不斷發(fā)展變化的,會用聯(lián)系的觀點看待問題。
2024-12-08 18:59
【摘要】-*-§4導數(shù)的四則運算法則首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學習目標思維脈絡(luò)1.了解函數(shù)的和、差、積、商的導數(shù)公式的推導.2.掌握兩個函數(shù)的和、差、積、商的求導法則,能正確運用求導法則求某些簡單函數(shù)的導數(shù).
2024-12-06 23:23