【摘要】1第一章行列式:(1)381141102???;(2)bacacbcba(3)222111cbacba;(4)yxyxxyxyyxyx???.解(1)????381141102
2025-01-24 10:35
【摘要】《線性代數(shù)》習(xí)題答案習(xí)題一一、填空題1、82、1或-23、?????????????????????600012600166203212134、1?5、0??6、2121?
2024-09-24 21:16
【摘要】第一篇:線性代數(shù)習(xí)題答案 習(xí)題三(A類) =(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1...
2024-11-09 22:39
【摘要】第一篇:線性代數(shù)習(xí)題答案 、=2,s=5,t=8或r=5,s=8,t=2或r=8,s=2,t==2,j=;a13a25a32a44a51;;當(dāng)k為偶數(shù)時,排列為偶排列,當(dāng)k為奇數(shù)時,(1)1;(2)...
2024-11-09 12:06
【摘要】第一章行列式一、單項選擇題1.下列排列是5階偶排列的是().(A)24315(B)14325(C)41523(D)243512.如果階排列的逆序數(shù)是,則排列的逆序數(shù)是().(A)(B)(C)(D)3.階行列式的展開式中含的項共有(
2025-04-09 07:05
【摘要】線性代數(shù)習(xí)題冊答案第一章行列式練習(xí)一班級學(xué)號姓名1.按自然數(shù)從小到大為標(biāo)準(zhǔn)次序,求下列各排列的逆序數(shù):(1)τ(3421)=5;(2)τ(135642)=6;(3)τ(13…(2n-1)(2n)…42)=2+4
2024-08-24 11:00
【摘要】線性代數(shù)陳建龍主編科學(xué)出版社課后習(xí)題答案
2025-07-13 21:06
【摘要】....第1章矩陣習(xí)題1.寫出下列從變量x,y到變量x1,y1的線性變換的系數(shù)矩陣:(1);(2)2.(通路矩陣)a省兩個城市a1,a2和b省三個城市b1,b2,b3的交通聯(lián)結(jié)情況如圖所示,.
2025-07-13 20:52
【摘要】-1-習(xí)題解答習(xí)題一(A)1.用消元法解下列線性方程組:(1)??????????????.5432,9753,432321321321xxxxxxxxx解由原方程組得同解方程組12323234,23,xx
2024-09-18 11:35
【摘要】一、選擇題1.n階行列式等于[].習(xí)題一(26頁)(A)1;(B)(-1)n-1;(C)0;(D)-1.B0111101111011111
2025-04-06 05:54
【摘要】第一章行列式1.證明:(1)首先證明是數(shù)域。因為,所以中至少含有兩個復(fù)數(shù)。任給兩個復(fù)數(shù),我們有。因為是數(shù)域,所以有理數(shù)的和、差、積仍然為有理數(shù),所以。如果,則必有不同時為零,從而。又因為有理數(shù)的和、差、積、商仍為有理數(shù),所以。綜上所述,我們有是數(shù)域。(2)類似可證明是數(shù)域,這兒是一個素數(shù)。(3)下面證明:若為互異素數(shù),則。(
2025-07-13 20:38
【摘要】專門收集歷年試卷第一部分選擇題(共28分)一、單項選擇題(本大題共14小題,每小題2分,共28分)在每小題列出的四個選項中只有一個是符合題目要求的,請將其代碼填在題后的括號內(nèi)。錯選或未選均無分。=m,=n,則行列式等于()A.m+n B.-(m+n)C.n-m D.m-n=,則A-1等于()A. B.
2025-07-06 23:03
【摘要】線性代數(shù)習(xí)題及答案習(xí)題一1.求下列各排列的逆序數(shù).(1)341782659;(2)987654321;(3)n(n?1)…321;(4)13…(2n?1)(2n)(2n?2)…2.【解】(1)τ(341782659)=11;(2)τ(987654321)=36;(3)
2025-01-24 10:34
【摘要】第一章行列式1.利用對角線法則計算下列三階行列式:(1);解=2′(-4)′3+0′(-1)′(-1)+1′1′8-0′1′3-2′(-1)′8-1′(-4)′(-1)
2025-07-13 21:04
【摘要】《線性代數(shù)》同步練習(xí)冊班級姓名學(xué)號1第一章矩陣§矩陣的概念與運算:361622411?????????
2025-01-24 10:36