【摘要】第四節(jié)洛朗級(jí)數(shù)二、洛朗級(jí)數(shù)的概念三、函數(shù)的洛朗展開(kāi)式一、問(wèn)題的引入五、小結(jié)與思考四、典型例題2一、問(wèn)題的引入問(wèn)題:.,)(00的冪級(jí)數(shù)是否能表示為不解析在如果zzzzf?nnnzzc)(.10??????雙邊冪級(jí)數(shù)負(fù)冪項(xiàng)部分正冪項(xiàng)
2025-02-03 11:17
【摘要】《復(fù)變函數(shù)論》試題庫(kù)梅一A111《復(fù)變函數(shù)》考試試題(一)1、__________.(為自然數(shù))2._________..,則的孤立奇點(diǎn)有__________..(z)在整個(gè)平面上處處解析,則稱它是__________.,則______________.,其中n為自然數(shù).9.的孤立奇點(diǎn)為_(kāi)_______.,則.(40分):1.
2025-04-09 00:18
【摘要】12課程說(shuō)明及考核辦法?課程說(shuō)明?面向通信學(xué)院的必修課,40學(xué)時(shí).?學(xué)時(shí)所限,基本上按教材內(nèi)容授課.?考核辦法?課程結(jié)束后,統(tǒng)一組織考試.?成績(jī)?yōu)榘俜种?,無(wú)平時(shí)成績(jī).3第一章復(fù)數(shù)與復(fù)變函數(shù)?本章主要內(nèi)容?復(fù)數(shù)的概念;?復(fù)數(shù)的性質(zhì),運(yùn)算;?復(fù)平面
2024-08-13 04:10
【摘要】By王建Email:復(fù)變函數(shù)的應(yīng)用背景世界著名數(shù)學(xué)家:19世紀(jì)最獨(dú)特的創(chuàng)造是復(fù)變函數(shù)理論。象微積分的直接擴(kuò)展統(tǒng)治了18世紀(jì)那樣,該數(shù)學(xué)分支幾乎統(tǒng)治了19世紀(jì)。它曾被稱為這個(gè)世紀(jì)的數(shù)學(xué)享受,也曾作為抽象科學(xué)中最和諧的理論。人們引入復(fù)數(shù)。在實(shí)數(shù)范圍內(nèi)無(wú)解方程如從解代數(shù)方程
2025-02-03 09:05
【摘要】12設(shè)D是單連通區(qū)域,P,Q有一階連續(xù)偏導(dǎo)數(shù),則,)1(xQyPD?????內(nèi)處處有在,0)2(???LQdyPdxLD,有內(nèi)任一按段光滑閉曲線沿與路徑無(wú)關(guān),,有內(nèi)任意按段光滑曲線對(duì)??LQdyPdxLD)3(。內(nèi)是某一函數(shù)的全微分在)(DQdyPdx?43D一、柯西積分定理C
2024-12-23 00:49
【摘要】復(fù)習(xí)與回顧定理二.),(),(),(:),(),()(00000處連續(xù)在和連續(xù)的充要條件是在函數(shù)yxyxvyxuiyxzyxivyxuzf????定理一.),(lim,),(lim)(lim,,),,(),()(0000000
2025-02-03 08:40
【摘要】§復(fù)變函數(shù)定義(一元或單)復(fù)變函數(shù)(簡(jiǎn)稱復(fù)變函數(shù)):()fDCC??即復(fù)變函數(shù),是中某幾何到的一個(gè)映射,如:,稱為的定義域,為的值域。fCDCDff()fD()wfz?由于
2024-11-13 16:42
【摘要】一次函數(shù)測(cè)試題(B)一.填空(每題4分,共32分)1.已知一個(gè)正比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)(-2,4),則這個(gè)正比例函數(shù)的表達(dá)式是.2.已知一次函數(shù)y=kx+5的圖象經(jīng)過(guò)點(diǎn)(-1,2),則k=.3.一次函數(shù)y=-2x+4的圖象與x軸交點(diǎn)坐標(biāo)是,與y軸交點(diǎn)坐標(biāo)是圖象與坐標(biāo)軸所圍成的三角形面積是
2025-04-08 05:36
【摘要】Matlab在復(fù)變函數(shù)中應(yīng)用數(shù)學(xué)實(shí)驗(yàn)(一)華中科技大學(xué)數(shù)學(xué)系二○○一年十月MATLAB在復(fù)變函數(shù)中的應(yīng)用復(fù)變函數(shù)的運(yùn)算是實(shí)變函數(shù)運(yùn)算的一種延伸,但由于其自身的一些特殊的性質(zhì)而顯得不同,特別是當(dāng)它引進(jìn)了“留數(shù)”的概念,且在引入了Taylor級(jí)數(shù)展開(kāi)Laplace變換和Fourier變換之后而使其顯得更為
2024-09-09 12:45
【摘要】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換?初等函數(shù)復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換yieyezfxxsincos)(??1212(),()(),
2024-09-18 01:35
【摘要】......復(fù)變函數(shù)測(cè)試題一
2025-04-09 00:17
【摘要】一、填空(每題3分,共24分)1.10)3131(ii??的實(shí)部是______,虛部是________,輻角主值是______.2.滿足5|2||2|????zz的點(diǎn)集所形成的平面圖形為_(kāi)______________,該圖形是否為區(qū)域___.3.)(zf在0z處可展成Taylor級(jí)數(shù)與)(zf在0z處解析是
2025-01-23 20:06
【摘要】第三章復(fù)變函數(shù)的積分3.1基本要求與內(nèi)容提要3.1.1基本要求1.正確理解復(fù)變函數(shù)積分的概念.2.掌握復(fù)變函數(shù)積分的一般計(jì)算法.3.掌握并能運(yùn)用柯西―古薩基本定理和牛頓―萊布尼茨公式來(lái)計(jì)算積分.4.掌握復(fù)合閉路定理并能運(yùn)用其運(yùn)算積分.5.掌握并能熟練運(yùn)用柯西積分公式.6.掌握解析函數(shù)的高階導(dǎo)數(shù)公式,理解解析函數(shù)的導(dǎo)數(shù)仍是解析函數(shù),會(huì)用高階導(dǎo)數(shù)公式計(jì)算積分.
2024-09-09 19:44
【摘要】復(fù)變函數(shù)復(fù)習(xí)提綱(一)復(fù)數(shù)的概念:,是實(shí)數(shù),..注:兩個(gè)復(fù)數(shù)不能比較大小.1)模:;2)幅角:在時(shí),矢量與軸正向的夾角,記為(多值函數(shù));主值是位于中的幅角。3)與之間的關(guān)系如下:當(dāng);當(dāng);4)三角表示:,其中;注:中間一定是“+”號(hào)。5)指數(shù)表示:,其中。(二)復(fù)數(shù)的運(yùn)算:若,則:1)若,則;
2025-05-31 03:45
【摘要】習(xí)題一答案1.求下列復(fù)數(shù)的實(shí)部、虛部、模、幅角主值及共軛復(fù)數(shù):(1)(2)(3)(4)解:(1),因此:,(2),因此,,(3),因此,,(4)因此,,2.將下列復(fù)數(shù)化為三角表達(dá)式和指數(shù)表達(dá)式:(1)
2025-07-10 19:49