freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

[高考數(shù)學(xué)]高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)和大學(xué)所有數(shù)學(xué)公式-閱讀頁(yè)

2025-06-14 23:33本頁(yè)面
  

【正文】 統(tǒng)一定義..4. 圓錐曲線的統(tǒng)一定義:平面內(nèi)到定點(diǎn)F和定直線的距離之比為常數(shù)的點(diǎn)的軌跡.當(dāng)時(shí),軌跡為橢圓;當(dāng)時(shí),軌跡為拋物線;當(dāng)時(shí),軌跡為雙曲線;當(dāng)時(shí),軌跡為圓(,當(dāng)時(shí)).5. 圓錐曲線方程具有對(duì)稱性. 例如:橢圓的標(biāo)準(zhǔn)方程對(duì)原點(diǎn)的一條直線與雙曲線的交點(diǎn)是關(guān)于原點(diǎn)對(duì)稱的. 因?yàn)榫哂袑?duì)稱性,所以欲證AB=CD, 即證AD與BC的中點(diǎn)重合即可.注:橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì)橢圓雙曲線拋物線定義1.到兩定點(diǎn)F1,F2的距離之和為定值2a(2a|F1F2|)的點(diǎn)的軌跡1.到兩定點(diǎn)F1,F2的距離之差的絕對(duì)值為定值2a(02a|F1F2|)的點(diǎn)的軌跡2.與定點(diǎn)和直線的距離之比為定值e的點(diǎn)的軌跡.(0e1)2.與定點(diǎn)和直線的距離之比為定值e的點(diǎn)的軌跡.(e1)與定點(diǎn)和直線的距離相等的點(diǎn)的軌跡.圖形方程標(biāo)準(zhǔn)方程(0)(a0,b0)y2=2px參數(shù)方程(t為參數(shù))范圍─a163。a,─b163。b|x| 179。Rx179。實(shí)軸長(zhǎng)2a, 虛軸長(zhǎng)2b.x軸焦點(diǎn)F1(c,0), F2(─c,0)F1(c,0), F2(─c,0)焦距2c (c=)2c (c=)離心率e=1準(zhǔn)線x=x=漸近線y=177。.對(duì)應(yīng)邊分別平行的角.異面直線所成的角.異面直線的公垂線.異面直線的距離.?dāng)?shù)學(xué)探索169。.平行平面間的距離.二面角及其平面角.兩個(gè)平面垂直的判定與性質(zhì).?dāng)?shù)學(xué)探索169。數(shù)學(xué)探索169。能夠畫出空間兩條直線、直線和平面的各種位置關(guān)系的圖形,能夠根據(jù)圖形想像它們的位置關(guān)系.?dāng)?shù)學(xué)探索169。(3)掌握直線和平面平行的判定定理和性質(zhì)定理;掌握直線和平面垂直的判定定理和性質(zhì)定理;掌握斜線在平面上的射影、直線和平面所成的角、直線和平面的距離的概念掌握三垂線定理及其逆定理.?dāng)?shù)學(xué)探索169。(5)會(huì)用反證法證明簡(jiǎn)單的問(wèn)題.?dāng)?shù)學(xué)探索169。(7)了解棱柱的概念,掌握棱柱的性質(zhì),會(huì)畫直棱柱的直觀圖.?dāng)?shù)學(xué)探索169。(9)了解球的概念,掌握球的性質(zhì),掌握球的表面積、體積公式.?dāng)?shù)學(xué)探索169。數(shù)學(xué)探索169。.平面圖形直觀圖的畫法.?dāng)?shù)學(xué)探索169。.直線和平面垂直的判定.三垂線定理及其逆定理.?dāng)?shù)學(xué)探索169。、減法與數(shù)乘.空間向量的坐標(biāo)表示.空間向量的數(shù)量積.?dāng)?shù)學(xué)探索169。.平面的法向量.點(diǎn)到平面的距離.直線和平面所成的角.向量在平面內(nèi)的射影數(shù)學(xué)探索169。.正多面體.棱柱.棱錐.球.?dāng)?shù)學(xué)探索169。(1)掌握平面的基本性質(zhì)。(2)掌握直線和平面平行的判定定理和性質(zhì)定理;;掌握三垂線定理及其逆定理.?dāng)?shù)學(xué)探索169。(4)了解空間向量的基本定理;.?dāng)?shù)學(xué)探索169。(6)理解直線的方向向量、平面的法向量、向量在平面內(nèi)的射影等概念.?dāng)?shù)學(xué)探索169。(8)了解多面體、凸多面體的概念。(9)了解棱柱的概念,掌握棱柱的性質(zhì),會(huì)畫直棱柱的直觀圖.?dāng)?shù)學(xué)探索169。會(huì)畫正棱錐的直觀圖.?dāng)?shù)學(xué)探索169。(考生可在9(A)和9(B)中任選其一)09. 立體幾何 知識(shí)要點(diǎn)一、 平面.1. 經(jīng)過(guò)不在同一條直線上的三點(diǎn)確定一個(gè)面.注:兩兩相交且不過(guò)同一點(diǎn)的四條直線必在同一平面內(nèi).2. 兩個(gè)平面可將平面分成3或4部分.(①兩個(gè)平面平行,②兩個(gè)平面相交)3. 過(guò)三條互相平行的直線可以確定1或3個(gè)平面.(①三條直線在一個(gè)平面內(nèi)平行,②三條直線不在一個(gè)平面內(nèi)平行)[注]:三條直線可以確定三個(gè)平面,三條直線的公共點(diǎn)有0或1個(gè).4. 三個(gè)平面最多可把空間分成 8 部分.(X、Y、Z三個(gè)方向)二、 空間直線.1. 空間直線位置分三種:相交、平行、異面. 相交直線—共面有反且有一個(gè)公共點(diǎn);平行直線—共面沒(méi)有公共點(diǎn);異面直線—不同在任一平面內(nèi)[注]:①兩條異面直線在同一平面內(nèi)射影一定是相交的兩條直線.()(可能兩條直線平行,也可能是點(diǎn)和直線等)②直線在平面外,指的位置關(guān)系:平行或相交③若直線a、b異面,a平行于平面,b與的關(guān)系是相交、平行、在平面內(nèi).④兩條平行線在同一平面內(nèi)的射影圖形是一條直線或兩條平行線或兩點(diǎn).⑤在平面內(nèi)射影是直線的圖形一定是直線.()(射影不一定只有直線,也可以是其他圖形)⑥在同一平面內(nèi)的射影長(zhǎng)相等,則斜線長(zhǎng)相等.()(并非是從平面外一點(diǎn)向這個(gè)平面所引的垂線段和斜線段)⑦是夾在兩平行平面間的線段,若,則的位置關(guān)系為相交或平行或異面.2. 異面直線判定定理:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線和平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線.(不在任何一個(gè)平面內(nèi)的兩條直線)3. 平行公理:平行于同一條直線的兩條直線互相平行.4. 等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等(如下圖). (二面角的取值范圍) (直線與直線所成角) (斜線與平面成角) (直線與平面所成角)(向量與向量所成角推論:如果兩條相交直線和另兩條相交直線分別平行,那么這兩組直線所成銳角(或直角)相等.5. 兩異面直線的距離:公垂線的長(zhǎng)度.空間兩條直線垂直的情況:相交(共面)垂直和異面垂直.是異面直線,則過(guò)外一點(diǎn)P,過(guò)點(diǎn)P且與都平行平面有一個(gè)或沒(méi)有,但與距離相等的點(diǎn)在同一平面內(nèi). (或在這個(gè)做出的平面內(nèi)不能叫與平行的平面)三、 直線與平面平行、直線與平面垂直.1. 空間直線與平面位置分三種:相交、平行、在平面內(nèi).2. 直線與平面平行判定定理:如果平面外一條直線和這個(gè)平面內(nèi)一條直線平行,那么這條直線和這個(gè)平面平行.(“線線平行,線面平行”)[注]:①直線與平面內(nèi)一條直線平行,則∥. ()(平面外一條直線)②直線與平面內(nèi)一條直線相交,則與平面相交. ()(平面外一條直線)③若直線與平面平行,則內(nèi)必存在無(wú)數(shù)條直線與平行. (√)(不是任意一條直線,可利用平行的傳遞性證之)④兩條平行線中一條平行于一個(gè)平面,那么另一條也平行于這個(gè)平面. ()(可能在此平面內(nèi))⑤平行于同一直線的兩個(gè)平面平行.()(兩個(gè)平面可能相交)⑥平行于同一個(gè)平面的兩直線平行.()(兩直線可能相交或者異面)⑦直線與平面、所成角相等,則∥.()(、可能相交)3. 直線和平面平行性質(zhì)定理: 如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行. (“線面平行,線線平行”)4. 直線與平面垂直是指直線與平面任何一條直線垂直,過(guò)一點(diǎn)有且只有一條直線和一個(gè)平面垂直,過(guò)一點(diǎn)有且只有一個(gè)平面和一條直線垂直. l 若⊥,⊥,得⊥(三垂線定理),得不出⊥. 因?yàn)椤停淮怪監(jiān)A.l 三垂線定理的逆定理亦成立.直線與平面垂直的判定定理一:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這兩條直線垂直于這個(gè)平面.(“線線垂直,線面垂直”)直線與平面垂直的判定定理二:如果平行線中一條直線垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面.推論:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行.[注]:①垂直于同一平面的兩個(gè)平面平行.()(可能相交,垂直于同一條直線的兩個(gè)平面平行)②垂直于同一直線的兩個(gè)平面平行.(√)(一條直線垂直于平行的一個(gè)平面,必垂直于另一個(gè)平面)③垂直于同一平面的兩條直線平行.(√)5. ⑴垂線段和斜線段長(zhǎng)定理:從平面外一點(diǎn)向這個(gè)平面所引的垂線段和斜線段中,①射影相等的兩條斜線段相等,射影較長(zhǎng)的斜線段較長(zhǎng);②相等的斜線段的射影相等,較長(zhǎng)的斜線段射影較長(zhǎng);③垂線段比任何一條斜線段短.[注]:垂線在平面的射影為一個(gè)點(diǎn). [一條直線在平面內(nèi)的射影是一條直線.()]⑵射影定理推論:如果一個(gè)角所在平面外一點(diǎn)到角的兩邊的距離相等,那么這點(diǎn)在平面內(nèi)的射影在這個(gè)角的平分線上四、 平面平行與平面垂直.1. 空間兩個(gè)平面的位置關(guān)系:相交、平行.2. 平面平行判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,哪么這兩個(gè)平面平行.(“線面平行,面面平行”)推論:垂直于同一條直線的兩個(gè)平面互相平行;平行于同一平面的兩個(gè)平面平行.[注]:一平面間的任一直線平行于另一平面.3. 兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平面平行同時(shí)和第三個(gè)平面相交,那么它們交線平行.(“面面平行,線線平行”)4. 兩個(gè)平面垂直性質(zhì)判定一:兩個(gè)平面所成的二面角是直二面角,則兩個(gè)平面垂直.兩個(gè)平面垂直性質(zhì)判定二:如果一個(gè)平面與一條直線垂直,那么經(jīng)過(guò)這條直線的平面垂直于這個(gè)平面.(“線面垂直,面面垂直”)注:如果兩個(gè)二面角的平面對(duì)應(yīng)平面互相垂直,則兩個(gè)二面角沒(méi)有什么關(guān)系.5. 兩個(gè)平面垂直性質(zhì)定理:如果兩個(gè)平面垂直,那么在一個(gè)平面內(nèi)垂直于它們交線的直線也垂直于另一個(gè)平面.推論:如果兩個(gè)相交平面都垂直于第三平面,則它們交線垂直于第三平面.證明:如圖,找O作OA、OB分別垂直于,因?yàn)閯t. 6. 兩異面直線任意兩點(diǎn)間的距離公式:(為銳角取加,為鈍取減,綜上,都取加則必有)7. ⑴最小角定理:(為最小角,如圖)⑵最小角定理的應(yīng)用(∠PBN為最小角)簡(jiǎn)記為:成角比交線夾角一半大,且又比交線夾角補(bǔ)角一半長(zhǎng),一定有4條.成角比交線夾角一半大,又比交線夾角補(bǔ)角小,一定有2條.成角比交線夾角一半大,又與交線夾角相等,一定有3條或者2條.成角比交線夾角一半小,又與交線夾角一半小,一定有1條或者沒(méi)有. 五、 棱錐、棱柱.1. 棱柱.⑴①直棱柱側(cè)面積:(為底面周長(zhǎng),是高)該公式是利用直棱柱的側(cè)面展開圖為矩形得出的.②斜棱住側(cè)面積:(是斜棱柱直截面周長(zhǎng),是斜棱柱的側(cè)棱長(zhǎng))該公式是利用斜棱柱的側(cè)面展開圖為平行四邊形得出的.⑵{四棱柱}{平行六面體}{直平行六面體}{長(zhǎng)方體}{正四棱柱}{正方體}.{直四棱柱}{平行六面體}={直平行六面體}.⑶棱柱具有的性質(zhì):①棱柱的各個(gè)側(cè)面都是平行四邊形,所有的側(cè)棱都相等;直棱柱的各個(gè)側(cè)面都是矩形;正棱柱的各個(gè)側(cè)面都是全等的矩形.②棱柱的兩個(gè)底面與平行于底面的截面是對(duì)應(yīng)邊互相平行的全等多邊形.③過(guò)棱柱不相鄰的兩條側(cè)棱的截面都是平行四邊形.注:①棱柱有一個(gè)側(cè)面和底面的一條邊垂直可推測(cè)是直棱柱. ()(直棱柱不能保證底面是鉅形可如圖)②(直棱柱定義)棱柱有一條側(cè)棱和底面垂直.⑷平行六面體:定理一:平行六面體的對(duì)角線交于一點(diǎn),并且在交點(diǎn)處互相平分.[注]:四棱柱的對(duì)角線不一定相交于一點(diǎn).定理二:長(zhǎng)方體的一條對(duì)角線長(zhǎng)的平方等于一個(gè)頂點(diǎn)上三條棱長(zhǎng)的平方和.推論一:長(zhǎng)方體一條對(duì)角線與同一個(gè)頂點(diǎn)的三條棱所成的角為,則.推論二:長(zhǎng)方體一條對(duì)角線與同一個(gè)頂點(diǎn)的三各側(cè)面所成的角為,則.[注]:①有兩個(gè)側(cè)面是矩形的棱柱是直棱柱.()(斜四面體的兩個(gè)平行的平面可以為矩形)②各側(cè)面都是正方形的棱柱一定是正棱柱.()(應(yīng)是各側(cè)面都是正方形的直棱柱才行)③對(duì)角面都是全等的矩形的直四棱柱一定是長(zhǎng)方體.()(只能推出對(duì)角線相等,推不出底面為矩形)④棱柱成為直棱柱的一個(gè)必要不充分條件是棱柱有一條側(cè)棱與底面的兩條邊垂直. (兩條邊可能相交,可能不相交,若兩條邊相交,則應(yīng)是充要條件)2. 棱錐:棱錐是一個(gè)面為多邊形,其余各面是有一個(gè)公共頂點(diǎn)的三角形.[注]:①一個(gè)棱錐可以四各面都為直角三角形.②一個(gè)棱柱可以分成等體積的三個(gè)三棱錐;所以.⑴①正棱錐定義:底面是正多邊形;頂點(diǎn)在底面的射影為底面的中心.[注]:i. 正四棱錐的各個(gè)側(cè)面都是全等的等腰三角形.(不是等邊三角形)ii. 正四面體是各棱相等,而正三棱錐是底面為正△側(cè)棱與底棱不一定相等iii. 正棱錐定義的推論:若一個(gè)棱錐的各個(gè)側(cè)面都是全等的等腰三角形(即側(cè)棱相等);底面為正多邊形.②正棱錐的側(cè)面積:(底面周長(zhǎng)為,斜高為)③棱錐的側(cè)面積與底面積的射影公式:(側(cè)面與底面成的二面角為)附: 以知⊥,為二面角. 則①,②,③ ①②③得.注:S為任意多邊形的面積(可分別多個(gè)三角形的方法).⑵棱錐具有的性質(zhì):①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).②正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形.⑶特殊棱錐的頂點(diǎn)在底面的射影位置:①棱錐的側(cè)棱長(zhǎng)均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.②棱錐的側(cè)棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.③棱錐的各側(cè)面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.④棱錐的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.⑤三棱錐有兩組對(duì)棱垂直,則頂點(diǎn)在底面的射影為三角形垂心.⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心.⑦每個(gè)四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;⑧每個(gè)四面體都有內(nèi)切球,球心是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑.[注]:i. 各個(gè)側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.()(各個(gè)側(cè)面的等腰三角形不知是否全等)ii. 若一個(gè)三角錐,兩條對(duì)角線互相垂直,則第三對(duì)角線必然垂直. 簡(jiǎn)證:AB⊥CD,AC⊥BD BC⊥AD. 令得,已知?jiǎng)t.iii. 空間四邊形OABC且四邊長(zhǎng)相等,則順次連結(jié)各邊的中點(diǎn)的四邊形一定是矩形.iv. 若是四邊長(zhǎng)與對(duì)角線分別相等,則順次連結(jié)各邊的中點(diǎn)的四邊是一定是正方形.簡(jiǎn)證:取AC中點(diǎn),則平面9
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1