【摘要】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-02-03 21:34
【摘要】回顧曲邊梯形求面積的問題??badxxfA)(第八節(jié)定積分的幾何應(yīng)用曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成。abxyo)(xfy?abxyo)(xfy?提示若用A?表示任一小區(qū)間],[xx
2025-05-16 04:48
【摘要】1積分方法與定積分的應(yīng)用1.複習(xí)不定積分和微分的關(guān)係2.定積分和面積的關(guān)係3.積分法則4.實(shí)際的應(yīng)用21.複習(xí)不定積分和微分的關(guān)係?我們先複習(xí)有關(guān)不定積分(IndefiniteIntegral)的定義。不定積分又稱為反微分(Antiderivative),其定義如下:?定義1:
2024-09-21 09:25
【摘要】第五章定積分及其應(yīng)用§定積分及應(yīng)用內(nèi)容網(wǎng)絡(luò)圖定積分及其應(yīng)用定積分定義可積的條件性質(zhì)計(jì)算方法中值定理13條基本性質(zhì)性質(zhì)變上限積分求導(dǎo)定理牛頓一萊布尼茲公式基本方法變量代換湊微分分部積分換元法應(yīng)用微元法幾何應(yīng)用平面圖形面積旋轉(zhuǎn)體及一般立體的體積平面曲線弧長(zhǎng)物理應(yīng)用質(zhì)量重心坐標(biāo)
2024-09-05 06:09
【摘要】§可積條件Riemann積分的定義積分與分割、介點(diǎn)集的取法無關(guān)幾何意義(非負(fù)函數(shù)):函數(shù)圖象下方圖形的面積。xi-1xiiniiTbaxfdxxfR??????10||||)(lim)()(?其中iiiiiixxxxx????????1
2024-12-23 05:11
【摘要】abxyo2020年12月24日星期四問題情境:;;.我們把這些問題從具體的問題中抽象出來,作為一個(gè)數(shù)學(xué)概念提出來就是今天要講的定積分。由此我們可以給定積分的定義它們都?xì)w結(jié)為:分割、近似求和、取逼近定積分的定義:一般地,設(shè)函數(shù)f(x)在
2024-12-07 22:49
【摘要】第5章定積分及其應(yīng)用學(xué)習(xí)目標(biāo)理解定積分的概念,掌握定積分的基本性質(zhì).掌握變上限定積分的導(dǎo)數(shù)的計(jì)算方法.熟練應(yīng)用牛頓-萊布尼茲公式計(jì)算定積分,熟練掌握定積分的換元積分法和分部積分法.了解定積分在經(jīng)濟(jì)管理中的應(yīng)用,會(huì)利用定積分計(jì)算平面圖形的面積.定積分和不定積分是積分學(xué)中密切相關(guān)的兩個(gè)基本概念,、性質(zhì)和微積分基本定理,最后討論定積分在幾何、物理上的一些簡(jiǎn)單應(yīng)用.
2025-04-09 00:34
【摘要】第八節(jié)定積分的幾何應(yīng)用舉例一、平面圖形的面積二、體積三、平面曲線的弧長(zhǎng)一、平面圖形的面積1、直角坐標(biāo)系情形設(shè)曲線y=f(x)(x?0)與直線x=a,x=b(ab)及x軸所圍曲邊梯形的面積為A,則xyo)(xfy?abxxxd?
2025-05-14 05:41
【摘要】一、基本內(nèi)容二、小結(jié)思考題第二節(jié)定積分的性質(zhì)*證(此性質(zhì)可以推廣到有限多個(gè)函數(shù)代數(shù)和的情況)性質(zhì)1一、基本內(nèi)容*證性質(zhì)2補(bǔ)充:不論的相對(duì)位置如何,上式總成立.例若(定積分對(duì)于積分區(qū)間具有可加性)則性質(zhì)3證性質(zhì)4性質(zhì)5性質(zhì)5的推論:證(1)證說明:
2025-05-13 23:54
【摘要】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應(yīng)用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
2024-09-09 16:42
【摘要】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟(jì)應(yīng)用三、收益流的現(xiàn)值和將來值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
2024-09-19 12:42
【摘要】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程——一元微積分學(xué)一元微積分學(xué)大大學(xué)學(xué)數(shù)數(shù)學(xué)學(xué)((一一))第二十六講第二十六講定積分的計(jì)算定積分的計(jì)算第五章一元函數(shù)的積分本章學(xué)習(xí)要求:§熟悉不定積分和定積分的概念、性質(zhì)、基本運(yùn)算公式.§熟悉不定積分基本運(yùn)算公式.熟練掌握不定積分和定積分的換元法和分部積
2025-05-13 23:25
【摘要】第六章定積分應(yīng)用習(xí)題課一、定積分應(yīng)用的類型1.幾何應(yīng)用?????平面圖形的面積特殊立體的體積平面曲線弧長(zhǎng)???旋轉(zhuǎn)體的體積平行截面面積為已知立體的體積2.物理應(yīng)用?????變力作功水壓力引力二、構(gòu)造微元的基本思想及解題步驟1.構(gòu)造微元的基本思想
2025-02-04 00:54
【摘要】定積分的概念一、引入定積分概念的實(shí)例二、定積分的概念三、定積分的幾何意義四、定積分的性質(zhì)一、引入定積分概念的實(shí)例引例1曲邊梯形的面積曲邊梯形設(shè)函數(shù)f(x)在區(qū)間[a,b](ab)上非負(fù)且連續(xù),由曲線y=f(x),直線x=a,x=b及x軸圍成的圖形稱為曲邊梯形,其中曲線弧y=f(x)稱為曲
2024-11-18 20:04
【摘要】定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導(dǎo)數(shù);(3)當(dāng)t在區(qū)間],[??上變化時(shí),)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則有dtttfdxxfba????????)()]([)(.
2025-01-29 14:36