【摘要】城關中學二分校九年級上冊數(shù)學電子教案二次函數(shù)設計人:宋旺平教學目標:了解什么是二次函數(shù)教學重點:二次函數(shù)的有關概念教學難點:二次函數(shù)的有關概念的應用課時安排:1課時教學步驟:一、自學指導:—P29頁的內容(5分鐘)。①、②、③有什么特點?,弄清各項及其系數(shù)。.二、自學檢測:1.下列函數(shù)中,哪些是二次函數(shù)?(1)y=
2025-05-02 01:33
【摘要】二次方程根的分布與二次函數(shù)在閉區(qū)間上的最值歸納1、一元二次方程根的分布情況設方程的不等兩根為且,相應的二次函數(shù)為,方程的根即為二次函數(shù)圖象與軸的交點,它們的分布情況見下面各表(每種情況對應的均是充要條件)表一:(兩根與0的大小比較即根的正負情況)分布情況兩個負根即兩根都小于0兩個正根即兩根都大于0一正根一負根即一個根小于0,一個大于0大致圖象()
2025-04-19 04:24
【摘要】知識點8:待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象的位置與a,b,c之間的關系,二次函數(shù)與x軸的交點情況及與一元二次方程根與系數(shù)之間的內在聯(lián)系一、選擇題(),B(),C()為二次函數(shù)的圖象上的三點,則的大小關系是()A. B.C. D.?。憾魏瘮?shù)的圖像為下列圖像之一,則的值為()A.-1
【摘要】二次函數(shù)1.最大利潤與二次函數(shù)?頂點式,對稱軸和頂點坐標公式:?利潤=售價-進價.駛向勝利的彼岸回味無窮二次函數(shù)y=ax2+bx+c(a≠0)的性質想一想P352?總利潤=每件利潤×銷售數(shù)量.何時橙子總產量最大?100棵橙子樹,每一棵樹平均結600個橙子.現(xiàn)準備
2024-12-01 04:55
【摘要】二次函數(shù)基本概念,圖像及性質定義:一般地,如果是常數(shù),,那么叫做的二次函數(shù).2.二次函數(shù)的結構特征:yxO⑴等號左邊是函數(shù),右邊是關于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項.3.二次函數(shù)的基本形式的符號開口方向頂點坐標對
【摘要】第六節(jié)二次函數(shù)基礎梳理1.二次函數(shù)解析式的三種形式(1)一般式:.(2)頂點式:.(3)交點式:.2.二次函數(shù)
2024-11-29 01:26
【摘要】(2012南京市,24,8)某玩具由一個圓形區(qū)域和一個扇形區(qū)域組成,如圖,在⊙O1和扇形O2CD中,⊙O1與O2C、O2D分別相切于點A、B,已知∠CO2D=600,E、F是直線O1O2與⊙O1、扇形O2CD的兩個交點,且EF=24厘米,設⊙O1的半徑為x厘米.(1)用含x的代數(shù)式表示扇形O2CD的半徑;(2)若⊙O1、,當⊙O1的半徑為多少時,該玩具的制作成本最小?
2024-12-02 17:28
【摘要】二次函數(shù)考點分析★★★二次函數(shù)的圖像拋物線的時候應抓住以下五點:開口方向,對稱軸,頂點,與x軸的交點,與y軸的交點.★★二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)一般式:y=ax2+bx+c,三個點頂點坐標(-,).頂點式:y=a(x-h(huán))2+k,頂點坐標對稱軸.,頂點坐標(h,k)★★★abc作用分析│a│的大小決定了開口的寬
【摘要】二次函數(shù)的圖像與性質復習考點3、二次函數(shù)的圖像與性質基礎知識復習考點2,、解析式:(1)一般式:y=ax2+bx+c(a≠0);(2)頂點式:y=a(x–m)2+n,頂點為(m,n);(3)交點式:y=a(x–x1)(x-x2),與x軸兩交點是(x1,
2024-12-02 00:08
【摘要】§4二次函數(shù)性質的再研究4.1二次函數(shù)的圖像學習導航學習目標重點難點重點:二次函數(shù)圖像變換及求解析式.難點:對圖像變換的理解及圖像的應用.新知初探·思維啟動1.二次函數(shù)的定義及解析式(1)二次函數(shù)的概念函數(shù)__________________
2024-11-29 02:28
【摘要】九年級數(shù)學(下)第二章二次函數(shù)6.何時獲得最大利潤(1)二次函數(shù)的應用陽泉市義井中學高鐵牛?請你幫助分析:銷售單價是多少時,可以獲利最多?何時獲得最大利潤?某商店經(jīng)營T恤衫,已知成批購進時單價是.根據(jù)市場調查,銷售量與銷售單價滿足如下關系:在某一時間內,單價是,銷售量是500件,而單價每降低1
2024-11-26 18:08
【摘要】二次函數(shù)圖像和性質復習例1:已知二次函數(shù)y=x2-2x-8(1)二次項,一次項系數(shù),常數(shù)(2)求二次函數(shù)的頂點坐標,對稱軸,最值(3)當x在什么范圍內,y隨x的增大而減小(4)當x為何值時,y>0,x為何值時,y<0(5)把二次函數(shù)y=x2-2x-8向左平移三個單位,再向下平移四個單位得到函數(shù)解析式
2024-12-02 02:38
【摘要】二次函數(shù)y=ax2的圖象和性質xy一.平面直角坐標系:1.有關概念:x(橫軸)y(縱軸)o第一象限第二象限第三象限第四象限Pab(a,b)2.平面內點的坐標:3.坐標平面內的點與有序實數(shù)對是:一一對應.坐標平面內的任意一點M,都有
2024-12-11 23:43
【摘要】1.如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.(1)求拋物線的解析式;(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積為17,若存在,求出點F的坐標;若不存在,請說明理由;2.已知在平面直