【摘要】不等式與不等式組測(cè)試姓名__________學(xué)號(hào)____一、選擇題(每題4分,共32分)1.不等式axb?的解集是bxa?,那么a的取值范圍是???????()A.0a?B.0a?C.0a?D.0a?2.不等式2135xx???的正整數(shù)解的個(gè)數(shù)是??
2024-12-01 04:58
【摘要】1如皋初中七下不等式與不等式組單元測(cè)試題班級(jí)姓名學(xué)號(hào)一、選擇題:1.如果a>b,且acbc,那么應(yīng)有()A.c>0B.cO=0D.
2025-01-23 21:17
【摘要】不等式與不等式組綜合檢測(cè)題一、選擇題1,若-a>a,則a必為()2,已知a<0,-1<b<0,則a,ab,ab2之間的大小關(guān)系是()>ab>ab2>ab2>a>a>ab2D.ab<a<ab23,(
2024-12-02 02:11
【摘要】精品資源不等式與不等式組單元測(cè)試班級(jí)姓名座號(hào)成績(jī)一、選擇題(每小題5分,共30分)1、若mn,則下列不等式中成立的是()A、m+ana2D、a-ma-n2、不等式的負(fù)整數(shù)解的個(gè)數(shù)為()A、0個(gè)
2025-04-08 05:47
【摘要】不等式的證明班級(jí)_____姓名_____一、選擇題(本大題共10小題,每小題5分,共50分)1.若a0,b0,則的最小值是 ()A.2 B. C. D.42.分析法證明不等式中所說的“執(zhí)果索因”是指尋求使不等式成立的 ( )A.必要條件 B.充分條件
2025-07-09 19:20
【摘要】分式不等式的解法一.學(xué)習(xí)目標(biāo):1.會(huì)解簡(jiǎn)單的分式不等式。二.學(xué)習(xí)過程(一)基礎(chǔ)自測(cè)1.解下列不等式(1)(2)-x2+7x6(3).(二)嘗試學(xué)習(xí)(1)(2)0.(3)≥0(4
2025-04-08 12:19
【摘要】......不等式專題練習(xí)題一、知識(shí)內(nèi)容不等式是高中數(shù)學(xué)的重要內(nèi)容之一,不等式的性質(zhì)是解證不等式的基礎(chǔ);兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的定理(教材中稱為基本不等式,通常稱均值不等式)及其變形在不等式的證明和
2025-04-08 05:48
【摘要】不等式與不等式組單元測(cè)試一班級(jí):姓名:一、填空題(共10小題,每題3分,共30分)的解集是x的范圍用不等式表示出來______________3.?1≤2的非正整數(shù)解為
2024-12-03 22:47
【摘要】1.滿足不等式的整數(shù)是()A.-1,0,1,2,3B.0,1,2,3C.0,1D.-3,-2,-1,0,1()A.12B.3C.7D.24
2025-07-07 22:59
【摘要】.......初二數(shù)學(xué)不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>
2025-04-09 07:46
【摘要】《集合與不等式》測(cè)試題(時(shí)間120'分值120+10) 姓名: 得分:一、單選題(10*4′=40′)1.設(shè)集合M={x|0≤x2},集合N={x|-1x3},集合M∩N=( )。 A、[0,1] B、[0,2) C、[0,1) D、[0,2]2.“”是“”的( )條件。 A、充分而不必要 B、必要而不充分 C、充
2025-04-19 05:01
【摘要】第1頁(yè)共2頁(yè)初中數(shù)學(xué)不等式(組)應(yīng)用題綜合測(cè)試卷一、單選題(共3道,每道33分),組織20輛汽車裝運(yùn)A,B,C三種化學(xué)物資共200噸到某地.按計(jì)劃20輛汽車都要裝運(yùn),每輛汽車只能裝運(yùn)同一種物資且必須裝滿.請(qǐng)結(jié)合表中提供的信息,解答下列問題:(1)設(shè)裝運(yùn)A種物資的車輛數(shù)為x,裝運(yùn)B種
2024-09-09 21:30
【摘要】第一篇:選修4-5----不等式選講測(cè)試題 選修4-5不等式選講測(cè)試題 : ,b是任意的實(shí)數(shù),且ab,則()A.a(chǎn)2b2B. 1a1b 0,則下列不等式中 b 1a1b 1C...
2024-10-11 22:28
【摘要】函數(shù)導(dǎo)數(shù)與不等式專題一.利用切線與導(dǎo)數(shù)之間的聯(lián)系解決不等式有關(guān)問題1.(2013年高考四川)已知函數(shù),其中是實(shí)數(shù).設(shè),為該函數(shù)圖象上的兩點(diǎn),且.(1)指出函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)的圖象在點(diǎn)處的切線互相垂直,且,證明:;(3)若函數(shù)的圖象在點(diǎn)處的切線重合,求的取值范圍.2.(2014屆江西省新余)已知函數(shù),.(1)若曲
2025-04-08 12:16
【摘要】第一篇:構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明:e的(4n-4)/6n+3)次方 不等式兩邊取自然對(duì)數(shù)(嚴(yán)格遞增)有: ln(2^2/2^2-1)+ln(3^2/3^2-1)+...
2024-10-31 14:46