freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

[自然科學(xué)]第3章線性系統(tǒng)的時域分析parta-閱讀頁

2025-03-08 12:35本頁面
  

【正文】 機(jī)電系統(tǒng)同時具有機(jī)械和電氣兩方面的慣性,所以都是二階或更高階的系統(tǒng)。在實際中更常見的是高階的系統(tǒng),但是這些系統(tǒng)往往可以近似為二階系統(tǒng)。 ?典型的二階系統(tǒng) 具有如下的傳遞函數(shù)和結(jié)構(gòu)圖: 2222)()(nnnsssRsY??????? ()Rs ()Ys2( 2 )nnss??????特點: ?負(fù)反饋閉環(huán)結(jié)構(gòu); ?開環(huán)帶有積分; ?沒有零點。 ?阻尼系數(shù) ζ 的取值決定了 特征根 在復(fù)平面上的位置。 過阻尼與臨界阻尼系統(tǒng)的階躍響應(yīng) ?過阻尼 系統(tǒng)和 臨界阻尼 系統(tǒng)的 單位階躍響應(yīng)是無振蕩的 單調(diào)上升曲線 。 ?i?o t)( ty0 1???i?o t)( ty0 1??122 2 2 211( ) 12 1( 1) 2 1( 1)s t s ty t e e? ? ?? ? ? ? ? ?? ? ? ? ? ?( ) 1 ( 1 ) , 0n t ny t e t t? ??? ? ? ?21(3 ~ 4)( 1 )s nt ? ? ?? ??4 .7snt ? ?欠阻尼系統(tǒng)的階躍響應(yīng) ?欠阻尼系統(tǒng)具有靈活的暫態(tài)性能 ,而且 多數(shù)機(jī)電控制系統(tǒng)都與 欠阻尼二階系統(tǒng)的性能相似,因此欠阻尼系統(tǒng)在實際中應(yīng)用最廣泛。阻尼系數(shù)越小,超調(diào)量越大。 ???????????pnpntt????一定時,一定時,可見:欠阻尼系統(tǒng)的階躍響應(yīng)指標(biāo)計算 在各類指標(biāo)中 調(diào)節(jié)時間 的計算最困難。 0 t s Approx. t s t 2111 ?? ?2111 ?? ?2111n te ??????2111n te ??????1 2?????? tne2l n ( 0 .0 5 1 )snt ??? ??? l n 0 . 0 5 3snnt ?? ??? ? ?由要求調(diào)整時間最短求阻尼比 討論:欠阻尼系統(tǒng)要求調(diào)整時間最短,如何求取此時的阻尼比? 由要求調(diào)整時間最短求阻尼比參考 ? 包絡(luò)線求法 得到的阻尼比在 5%和 2%要求下分別為 、 。 ?可以看出后者才是要求調(diào)整時間最短時的最佳阻尼比,所以用包絡(luò)線法計算的結(jié)果在精確度要求較高時是不科學(xué)的。 欠阻尼系統(tǒng)的階躍響應(yīng)指標(biāo)計算 ?上升時間 計算 21 si n( ) 11nr tdret??????? ? ?????????????????rnrnnr ttt????????一定時,一定時,21欠阻尼系統(tǒng)的階躍響應(yīng)指標(biāo)計算 ? 振蕩次數(shù) 22212 1 .5 1s s ddttNT????? ???? ???? ? ? ?????工程上, N=~2次,此時認(rèn)為控制系統(tǒng)有較好性能。 ? 衰減率 例:求階躍響應(yīng)的各指標(biāo) ?? TK ,n??與,%16% ??CR)1( ?TSSK例:已知如圖所示系統(tǒng)。,欠阻尼系統(tǒng)階躍響應(yīng)歸納 ?提高 ωn可減小上升時間、峰值時間、調(diào)整時間。 ζ過小時,調(diào)整時間長。 ?ζ =,調(diào)整時間短,快速性還好,而超調(diào)量 5%,平穩(wěn)性也好。 具有零點的典型二階系統(tǒng)分析續(xù) 22222222( ) 1 s i n ( 1 ) s i n ( 1 )111 s i n ( 1 ) s i n ( 1 )11nnnnttnnnttnney t t e teett????? ? ? ???? ? ? ? ???? ? ? ? ?? ?? ?????? ? ? ? ? ? ???? ? ? ? ? ?定量計算:引入一個定量描述零點作用的參量 α (零點與極點實部的比值 ) | | 1nnz?? ? ?? ???。具有零點的典型二階系統(tǒng)分析續(xù) %n z? ? ?已 知 、 、 , 可 求11( 4 l n ) ( 3 l n )| | | |ssnnllt o r tzz? ? ? ?? ? ? ? 8 4 if?????????????? ???,,如圖: Then 可以忽略零點對 σ%的影響,用典型的二階系統(tǒng)超調(diào)量公式計算。加入其他環(huán)節(jié),增加系統(tǒng)的可調(diào)參量 ?加入比例會如何呢? ?加入比例微分又如何呢? ?加入比例積分又如何呢? ?加入內(nèi)環(huán)采用速度反饋又如何呢? 典型二階系統(tǒng)為 ()Rs ()Ys2( 2 )nnss?????開環(huán)傳遞函數(shù)為????????????? 實際對象 其性能由自由振蕩頻率和阻尼系數(shù)決定。 Y(s) E(s) R(s) 2( 2 )nnss????K自己分析這個系統(tǒng)。這樣傳遞函數(shù)中會出現(xiàn)零點。 y (t) t 1 1 0 t 2 t 3 t 4 t 5 t e (t) t 1 1 0 t 2 t 3 t 4 t 5 t t 1 0 t 2 t 3 t 4 t 5 t ()detdt二階系統(tǒng)性能的改善 比例微分 ?增加微分控制環(huán)節(jié)后,取得誤差與誤差變化率 信息,為改善控制效果提供了保證。新增的項是典型二階系統(tǒng)階躍響應(yīng)的微分,或者說是典型二階系統(tǒng)的脈沖響應(yīng)??赏?過適當(dāng)選擇微分時間常數(shù) Td,改變阻尼的大小 ζd 。因此適當(dāng)選擇微分時間常數(shù),使系統(tǒng)具有過阻尼,則響應(yīng)將在不出現(xiàn)超調(diào)的條件下,顯著提高快速性。開環(huán)增益 K= ωn/2ζ 。對于機(jī)電系統(tǒng),其暫態(tài)過程較快,一般不推薦使用微分控制。它可以 ?減小乃至消除穩(wěn)態(tài)誤差; ?可以抑制輸入端的噪聲; ?增加了系統(tǒng)的階次,可能帶來穩(wěn)定性問題。 二階系統(tǒng)性能的改善 速度反饋 ?比例微分控制器是在前向通道并聯(lián)一個微分環(huán)節(jié)。 ()Es ()Ys 2( 2 )nnss?????()Rs? tKs22 2 2()( ) ( 2 )nn t n nYsR s s K s?? ? ? ?? ? ? ?ntt K ??? 21?? 超調(diào)量增加 速度反饋控制的特點 ? 引入速度反饋,不影響系統(tǒng)自然頻率,但使系統(tǒng)阻尼比增加。 ? 速度反饋不形成閉環(huán)零點, 因此 Kt=Td時, 其輸出平穩(wěn)性優(yōu)于比例-微分控制。 若要求 采用比例微分和速度反饋控制,求 Td和 Kt的取值。 有什么思路。 例解答 解:( 1)誤差信號的比例微分控制: 到 16%,必須有 ?%44% 從?? ?從? 1 1 10 . 2 5 * 8 4 0 . 52 2 4d d n d dT T T? ? ?? ? ? ? ? ? ? ?1 1 1 1( ) * 0 . 0 6 2 5( )2 4 4 1 6dTs? ? ? ? ?16 40 . 5 * 8? ??零點作用: 零點的影響可忽略! 計算調(diào)節(jié)時間: 2 2 2 2 211( ) ( 1 ) ( 1 6 4 ) 6 . 9 3 1 3 . 8 6nnl ? ? ? ??? ? ? ? ? ? ? ?)()( 1 st s ??????例解答續(xù) ( 2)輸出量的速度反饋控制: 12t t nK? ? ??? 0 . 0 6 2 5( )tKs??仍有 不用考慮能否忽略影響的問題,而且調(diào)節(jié)時間減小為: 3 . 2 0 . 8 ( )0 . 5 * 8sts??此題是否可以用比例積分控制達(dá)到要求?請下去思考,希望下節(jié)課有結(jié)果。 例解的 MATLAB程序 例解的 MATLAB仿真結(jié)果 仔細(xì)觀察,按上面的設(shè)計達(dá)到要求了嗎? 0 0 . 5 1 1 . 5 2 2 . 5 300 . 511 . 5 S t e p R e s p o n s eT i m e ( s e c )Amplitudeo r i g n a lp d _ c o n t r o lr a t e _ f e e d b a c k0 . 2 0 . 2 5 0 . 3 0 . 3 5 0 . 4 0 . 4 5 0 . 5 0 . 5 5 0 . 6 0 . 6 511 . 0 51 . 11 . 1 51 . 21 . 2 51 . 31 . 3 51 . 41 . 4 5 S t e p R e s p o n s eT im e ( s e c )Amplitudeo r ig n a lp d _ c o n t r o lr a t e _ f e e d b a c k內(nèi)容提要 ? 1. 什么時域分析 ? 2. 典型輸入信號 ? 3. 時域響應(yīng) ? 4. 穩(wěn)定性 ? 5. 性能指標(biāo) 暫態(tài)和穩(wěn)態(tài) ? 6. 一階系統(tǒng)、二階系統(tǒng) ? 7. 高階系統(tǒng)及其降階 ? 8. 線性系統(tǒng)的穩(wěn)態(tài)性能 ? 9. 根軌跡法 ? 、極點分布對系統(tǒng)性能的影響 高階系統(tǒng)時域分析 11 1 011 1 0121212211()()( ) ( ) ( )( ) ( ),( ) ( ) ( ) ( ) ( )()1( ) ( )( ) ( 2 )( 0) 1 ( )( 0)mmmmnnnmmnmmiiq rj k k nkjkb s b s b s bYsR s s a s a s ab s z s z s zY s N snmR s s p s p s p D sb s zR s Y sss s p s sN N sD s s???????? ? ? ??? ? ? ?? ? ?? ? ? ?? ? ????? ? ?? ? ???? ? ? ?0221 1 1139。其中輸入信號(控制信號)極點所對應(yīng)的拉普拉斯反變換為系統(tǒng)響應(yīng)的穩(wěn)態(tài)分量,傳遞函數(shù)極點所對應(yīng)的拉普拉斯反變換為系統(tǒng)響應(yīng)的瞬態(tài)分量 (各系統(tǒng)模態(tài)在穩(wěn)定的情況下漸衰為 0)。在穩(wěn)定的情況下,如果閉環(huán)極點遠(yuǎn)離虛軸,則相應(yīng)的模態(tài)就衰減得快,系統(tǒng)的調(diào)整時間也就較短。 ? pk距坐標(biāo)原點很遠(yuǎn),所對應(yīng)的瞬態(tài)分量不僅持續(xù)時間很短,而且其相應(yīng)的幅值亦較小,因而由它產(chǎn)生的瞬態(tài)分量可略去不計。 ? e. 如果系統(tǒng)中有一個 (極點或一對 )復(fù)數(shù)極點距虛軸最近,且附近沒有閉環(huán)零點,其他閉環(huán)極點與虛軸的距離都比該極點與虛軸距離大 5倍以上,稱其為系統(tǒng)的主導(dǎo)極點 (起主導(dǎo)作用 )。 ?處理方法:忽略或變通處理,使模型降階成易于用線性系統(tǒng)理論處理。下面是一個例子說明此問題。所以若不過分追求響應(yīng)的全過程準(zhǔn)確度,可以忽略小時間常數(shù)。此閉環(huán)系統(tǒng)如下框圖: Rs 1KUs s2Ks sqsUs( ) ( )122 1e m e mKKGsk s s st t t= ++( )( ) 1232 12m e m es KKR s s s s K K kqt t t= + + +用 routh判據(jù)求此系統(tǒng)的臨界開環(huán)增益得 121eeK K k t163。 高階系統(tǒng)模型的簡化 閉環(huán)情況 ?假若如開環(huán)系統(tǒng)一樣處理,將 τe忽略, 伺服系統(tǒng)總是穩(wěn)定的,而與上面結(jié)論矛盾。 ( )( ) ( )12121emes K K kR s s s K K kqt=++系統(tǒng)模型的簡化還有兩點措施 ? : (注意:可近似處理的條件是系統(tǒng)中一定還存在著一個相對較大的時間常數(shù),同時還必須考慮系統(tǒng)的開環(huán)增益。 12 1 2 1 211 1 1 1,1 1 ( ) 1 ( 1 ) ( 1 ) ( 1 ) ( ) 1ssnniiees s s s s s s??? ? ? ? ? ? ? ????? ? ?? ? ? ? ? ? ? ??存在主導(dǎo)極點的系統(tǒng)簡化例 ?例:某系統(tǒng)的閉環(huán)傳遞函數(shù)為 ?因?qū)崢O點距虛軸的距離比復(fù)極點大 5倍之多,可以認(rèn)為共軛復(fù)極點是主導(dǎo)極點
點擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1