【正文】
形截面梁 b h fb?h f fh?bf s s 0 0m in0m in0 A A h hb h b h h hhh????? ? ??? ?s s,m in m inffA A AbhAbh b b h???????? ????????p 基本計(jì)算公式 p 公式的應(yīng)用條件 p 截面設(shè)計(jì)與截面復(fù)核 p 計(jì)算系數(shù)法 n 基本計(jì)算公式 基本計(jì)算公式及適用條件 b h h 0 As 單筋矩形截面 0X ?? 1 c y sf bx f A? ?0M ??10 () 2ucxM M f bx h?? ? ?0()2ysxf A h??x T=fyAs M a1fc 截面等效應(yīng)力 a s sahh ??02/dcas ??n 公式 的適用條件 p 含鋼特征值 x 0 0 1 1yysccffAxh b h f f?? ??? ? ? ?p 適用條件 m a x,b? ? ? ???, m in m inssA A b h???n 截面設(shè)計(jì) 基本公式的應(yīng)用 已知: 彎矩設(shè)計(jì)值 M 求: 截面尺寸 b, h(h0)、截面配筋 As,以及材料強(qiáng)度 fy、 fc 未知數(shù): 受壓區(qū)高度 x、 b, h(h0)、 As、 fy、 fc 基本公式: 兩個(gè) [解 ] 根據(jù)環(huán)境類別及混凝土強(qiáng)度等級 , 先假定截面尺寸 ,確定混凝土保護(hù)層最小厚度 , 再假定 as, 得 h0, 并按混凝土強(qiáng)度等級確定 a1, 解二次聯(lián)立方程式 。 n 截面 復(fù)核 基本公式的應(yīng)用 J已知: 截面尺寸、配筋 As,以及材料強(qiáng)度 fy、 fc和彎矩設(shè)計(jì) 值 M 。 若 r大于 rmax,則說明屬于超筋梁 , 此時(shí)可取對應(yīng)于界限破壞時(shí)的受彎承載力;若 r小于 rmi , 則為少筋梁 , 說明該構(gòu)件不安全 , 需修改設(shè)計(jì)或進(jìn)行加固處理 。 → 如果 如果 ,說明截面尺寸偏小,應(yīng)增大截面尺寸,或改用雙筋截面梁。 n 憑經(jīng)驗(yàn)選取 截面寬度和配筋率 ( %~%) 截面高度應(yīng)符合模數(shù)。 “ 截面校核時(shí)一定是從力的平衡方程式開始 ” 若 若 b1 0 1 ?y s yccf A ff b h f? ? ???? ? ?? ? 2s u s 1 c 0 u, 1 0. 5 ?b M f bh M M? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? 2s b b u s 1 c 0 u, = 1 0. 5 ?bb M f bh M M? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?p 雙筋截面梁的應(yīng)用 p 受壓鋼筋的應(yīng)力 p 基本公式及適用條件 p基本公式的應(yīng)用 雙筋截面梁的應(yīng)用 定義 :在截面受壓區(qū)配臵 受力鋼筋 協(xié)助砼承受壓力的構(gòu)件 。 p 在不同的荷載組合情況下 , 梁的同一截面承受變號彎矩 時(shí) , 需要在截面的受拉區(qū)和受壓區(qū)均配臵受力鋼筋 , 形 成雙筋梁 。 受壓鋼筋的應(yīng)力 從經(jīng)濟(jì)角度出發(fā),希望截面破壞時(shí), 受壓鋼筋 屈服 。 受壓鋼筋的應(yīng)力 n 受壓鋼筋在截面破壞時(shí)的壓應(yīng)變應(yīng)滿足 ( 充分條件 ) ecu 截面應(yīng)變分布 b h 0 As 雙筋矩形截面梁 ?sAh sa?a s ?? ? x c csxa??M u T=fyAs x a1fc 截面應(yīng)力分布 ysfA??39。 ??css cucxax??1?39。 0 . 80 . 0 0 3 3 1 0 . 0 0 2ssax???? ? ?????? ?39。 39。2 sxa?39。sy???n 基本公式 基本公式及適用條件 n 適用條件 保證受拉鋼筋屈服(防止超筋梁) 保證受壓鋼筋屈服 注:雙筋梁不存在滿足 的問題;在平衡方程中令 即為單筋截面梁的公式。 為取得較經(jīng)濟(jì)的設(shè)計(jì) , 應(yīng)充分利用混凝土受壓 , 使總的鋼筋截面面積 ( As+A’ s) 為最小 。 2b b 0 10( 1 0 . 5 )()csysM b h fAf h a? ? ???? ??? ? /e hh? ? be???2010( 1 0 . 5 )()e e csysM b h fAf h a? ? ???? ??? ?10c e y ssyf b h f AAf?? ????be?? be???1 b 0c y ssyf b h f AAf?? ????be??? be???n 截面設(shè)計(jì) (二) 雙筋矩形截面計(jì)算 J已知: 彎矩設(shè)計(jì)值 、 截面尺寸、混凝土強(qiáng)等級和鋼筋級別 及 受壓鋼筋截面面積 求: 受拉鋼筋截面面積 未知數(shù): 受壓區(qū)高度 x、 As 基本公式: 兩個(gè) [解 ] 基本公式有兩個(gè) , 未知數(shù)也有二個(gè) , 因此可以直接求解 。 雙筋矩形截面計(jì)算 n 截面尺寸、材料強(qiáng)度、彎矩設(shè)計(jì)值 M以及受壓鋼筋面積 已知,求 受拉鋼筋面積 如果 ,則 如果 ,說明原有的 不夠,應(yīng)按 未知的情況計(jì)算; 如果 ,表示受壓鋼筋不能屈服,取 ,對 合力點(diǎn)取矩: 0210()y s sscM f A h af b h? ?? ? ????1 1 2 s??? ? ?39。 應(yīng)注意公式適用條件的判別 。s 0 b2/ah ????39。10y s y scf A f Af b h????? ?21 0 01 0 . 5()su c s y s sM f b h f A h a? ? ???? ? ?? ? ?? ? ?b??? be???? ? 2s b s b 1 0 01 0. 5 ( )b b u c y s sM f bh f A h a? ? ? ? ? ? ? ?? ? ? ? ? ?39。 a1fc fb?n 翼緣 寬度與跨度和翼緣高度有關(guān) T形截面翼緣的計(jì)算寬度 p 跨度大的梁 , 跨中截面翼緣的受力寬度也就大; p 翼緣與梁肋的接觸面處存在著剪應(yīng)力 , 正是依靠這種剪應(yīng)力 才將翼緣的壓力傳至梁肋 , 故翼緣寬度還受到翼緣厚度的限 制 。 f b39。 f b 0 h fh?影響翼緣寬度的三個(gè)因素 :計(jì)算跨度;梁肋凈距;翼緣厚度 基本公式及適用條件 n 兩類 T形截面及其判別 p 第一類 T形截面梁 p 第二類 T形截面梁 fhx ??x fhx ??x fhx ??p 界限情況 10 ()2fc f fhM f b h h? ?????截面校核 截面設(shè)計(jì) 1y s c f ff A f b h? ??? 1y s c f ff A f b h? ???10 ()2?????? fc f fhM f b h hx p 判別條件 第一類 T形截面梁 第二類 T形截面梁 基本公式及適用條件 n 兩類 T形截面及其判別 n 截面平衡條件 n 判別條件 n 滿足式( 1),說明不需全部翼緣受壓,即可與鋼筋所負(fù)擔(dān)的拉力相平衡 ; 用于截面校核判別 。 1 c f f y sf b h f A? ?? ? ( 1) 10 () 2fu c f fhM f b h h? ?????1y s c f ff A f b h? ???? ?39。 ? 為防止發(fā)生少筋破壞,受拉鋼筋面積應(yīng)滿足 注: 對第一類 T形截面梁,可視為 這樣一個(gè)矩形截面梁; 計(jì)算 ,其中 b取梁肋寬度,因?yàn)樽钚∨浣盥适歉鶕?jù)開裂彎矩計(jì)算的,它主要取決于截面受拉區(qū)的形狀。 As M u T=fyAs 截面應(yīng)力分布 x 10( ) ( )2????? ? ? fc f fhf b b h h,minssAA? T形截面的計(jì)算方法 n 截面設(shè)計(jì) 已知 M 、截面尺寸、鋼筋級別和混凝土強(qiáng)度等級,求 As 10 () 2?????? fc f fhM f b h h10 () 2?????? fc f fhM f b h h2101 1 2scfsMf b h??????? ? ?第一類 T形截面 第二類 T形截面 10210( ) ( )21 1 2fc f fscshM f b b h hf bh????????? ? ??? ? ?b???10 /s c f yA f b h f?? ??超筋梁,可增加梁高 ,混凝土強(qiáng)度等級 ,或按雙筋 T形截面計(jì)算 b??? T形截面的計(jì)算方法 n 截面 復(fù)核 已知 M 、截面尺寸、鋼筋級別和混凝土強(qiáng)度等級和 As,求 Mu 1? ???y s c f ff A f b h 1? ???y s c f ff A f b h110()2yscfu c ffAxfbxM f b x h???????第一類 T形截面 第二類 T形截面