【摘要】高中數(shù)學(xué)數(shù)列壓軸題練習(xí)(江蘇)及詳解,其前n項(xiàng)和為,且?,(Ⅰ)求數(shù)列的通項(xiàng)公式;?(Ⅱ)數(shù)列滿足,①求數(shù)列的通項(xiàng)公式;?②是否存在正整數(shù)m,,使得,,成等差數(shù)列?若存在,求出m,n的值;若不存在,請(qǐng)說明理由.解:(I)設(shè)數(shù)列的公差為d,則由?,,得,?計(jì)算得出?或(舍去).?;?(Ⅱ)①,,
2025-04-19 05:13
【摘要】:——直接利用等差或等比數(shù)列的定義求通項(xiàng)。特征:適應(yīng)于已知數(shù)列類型(等差或者等比).例1.等差數(shù)列是遞增數(shù)列,前n項(xiàng)和為,且成等比數(shù)列,.求數(shù)列的通項(xiàng)公式.變式練習(xí):,求的通項(xiàng)公式2.在等比數(shù)列中,,且為和的等差中項(xiàng),求數(shù)列的首項(xiàng)、公比及前項(xiàng)和.求數(shù)列的通項(xiàng)可用公式求解。特征:
2025-07-02 07:01
【摘要】等比數(shù)列的通項(xiàng)公式教學(xué)目標(biāo):1.掌握通項(xiàng)公式,并能應(yīng)用公式解決有關(guān)問題;2.理解等比數(shù)列的性質(zhì),并學(xué)會(huì)其簡單應(yīng)用;3.會(huì)求兩個(gè)正數(shù)的等比中項(xiàng),能利用等比中項(xiàng)的概念解決有關(guān)問題,提高分析、計(jì)算能力;4.通過學(xué)習(xí)推導(dǎo)等比數(shù)列的通項(xiàng)公式,掌握“疊乘法”.教學(xué)重點(diǎn):等比數(shù)列的通項(xiàng)公式.教學(xué)難點(diǎn):
2024-12-25 10:13
【摘要】課題:等差數(shù)列的通項(xiàng)公式班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】:1、會(huì)用“疊加法”求等差數(shù)列通項(xiàng)公式;2、會(huì)用等差數(shù)列通項(xiàng)公式解決一些簡單問題。【課前預(yù)習(xí)】??na,4,7,10,13,16,?,則100a=,猜想na=
2024-12-10 01:05
【摘要】等差數(shù)列的通項(xiàng)公式教學(xué)目標(biāo):1.掌握“疊加法”求等差數(shù)列通項(xiàng)公式的方法;2.掌握等差數(shù)列的通項(xiàng)公式,并能用公式解決一些簡單的問題;3.理解等差數(shù)列的性質(zhì),能熟練運(yùn)用等差數(shù)列的性質(zhì)解決有關(guān)問題.教學(xué)重點(diǎn):等差數(shù)列的通項(xiàng)公式,關(guān)鍵對(duì)通項(xiàng)公式含義的理解.教學(xué)難點(diǎn):等差數(shù)列的性質(zhì)和應(yīng)用.教學(xué)方法:
【摘要】課題:等比數(shù)列的通項(xiàng)公式班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1.理解等比數(shù)列的概念;體會(huì)等比數(shù)列是用來刻畫一類離散現(xiàn)象的重要數(shù)學(xué)模型。【課前預(yù)習(xí)】1.下列哪些數(shù)列是等差數(shù)列,哪些數(shù)列是等比數(shù)列?(1)12lg6lg3lg??????,,;
【摘要】數(shù)列通項(xiàng)公式幾種求法的文獻(xiàn)綜述摘要;從近幾年高考的內(nèi)容來看,數(shù)列是高考的重點(diǎn)內(nèi)容,數(shù)列在實(shí)踐和理論中均有較高的價(jià)值,而數(shù)列的列通項(xiàng)公式是數(shù)列的核心內(nèi)容之一。本文從2021-2021年高考求數(shù)列通項(xiàng)公式有關(guān)資料查閱,對(duì)數(shù)列通項(xiàng)公式的常用方法做一個(gè)文獻(xiàn)綜述。關(guān)鍵詞;數(shù)列、通項(xiàng)公式、求法、綜述.高中教材中的數(shù)列有利于發(fā)展學(xué)生的發(fā)散思維能力
2025-06-22 22:50
【摘要】高二數(shù)學(xué)導(dǎo)學(xué)案GRSX5-33常見遞推數(shù)列通項(xiàng)公式的求法高二數(shù)學(xué)備課組編一、學(xué)習(xí)目標(biāo):1.運(yùn)用累加、累乘、待定系數(shù)等方法求數(shù)列的通項(xiàng)公式。2.培養(yǎng)學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣;二、重點(diǎn)
2025-05-02 00:58
【摘要】數(shù)列通項(xiàng)公式的十種求法一、公式法二、累加法例1已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。例2已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。()三、累乘法例3已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。()評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系轉(zhuǎn)化為,進(jìn)而求出,即得數(shù)列的通項(xiàng)公式。例4已知數(shù)列滿足,求的通項(xiàng)公式。()評(píng)
2025-07-11 05:34
【摘要】數(shù)列通項(xiàng)的求法一、公式法二、迭加法若an+1=an+f(n),則:若an+1=f(n)an,則:三、疊乘法an=S1(n=1),Sn-Sn-1(n≥2).an=a1+?(ak-ak-1)=a1+?f(k-1)=a1+?f(k).n-1k=1
2024-12-01 08:49
【摘要】數(shù)列通項(xiàng)的求法高三備課組求數(shù)列的通項(xiàng)方法1、由等差,等比定義,寫出通項(xiàng)公式2、利用迭加an-an-1=f(n)、迭乘an/an-1=f(n)、迭代3、一階遞推,我們通常將其化為
2024-11-29 08:47
【摘要】......求遞推數(shù)列通項(xiàng)公式的十種策略例析遞推數(shù)列的題型多樣,求遞推數(shù)列的通項(xiàng)公式的方法也非常靈活,往往可以通過適當(dāng)?shù)牟呗詫栴}化歸為等差數(shù)列或等比數(shù)列問題加以解決,亦可采用不完全歸納法的方法,由特殊情形推導(dǎo)出一般情形,進(jìn)而用數(shù)學(xué)歸納法加以證明,因而求遞推數(shù)列的通項(xiàng)公式問題成為了高考命題中頗受青睞的考查內(nèi)容。筆者試給出求遞推數(shù)列通項(xiàng)
2025-07-12 04:51
【摘要】-1-高中數(shù)列知識(shí)點(diǎn)總結(jié)(一)等差數(shù)列的公式及性質(zhì)1.等差數(shù)列的定義:dan??1(d為常數(shù))(2?n);2.等差數(shù)列通項(xiàng)公式:*1()()adN????,首項(xiàng):1a,公差:d,末項(xiàng):na推廣:man)(??.從而mn;3.等差數(shù)列的判定方法(1)定義法:若dn??1或dan???1(常數(shù)?)
2024-08-23 18:08
【摘要】2.等比數(shù)列的概念及通項(xiàng)公式1.從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比.2.等比數(shù)列{an}的通項(xiàng)公式an=a1·qn-1(q≠0).3.如果a、G、b三個(gè)數(shù)滿足G2=G稱為a與b的等比中項(xiàng).4.等比數(shù)列的性質(zhì).
2024-12-25 00:28
【摘要】2.等差數(shù)列的概念及通項(xiàng)公式1.如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)減去它的前一項(xiàng)所得的差都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列.這個(gè)常數(shù)叫做等差數(shù)列的公差.2.如果數(shù)列{an}是公差為d的等差數(shù)列,則a2=a1+d;a3=a2+d=a1+2d.3.等差數(shù)列的通項(xiàng)公式為an=a1+(n-1)d.
2024-12-28 20:22