freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx九年級數(shù)學(xué)二模試題分類匯編——平行四邊形綜合附詳細(xì)答案-閱讀頁

2025-03-30 22:22本頁面
  

【正文】 所有的平行四邊形(不包括矩形).【答案】(1) 證明見解析;(2)四邊形、四邊形、四邊形、四邊形、四邊形都是平行四邊形.【解析】【分析】(1)由△AEF≌△CED,推出EF=DE,又AE=EC,推出四邊形ADCF是平行四邊形,只要證明∠ADC=90176。點E、F分別在邊AD、AB上.(1)如圖1,若點P與點O重合:①求證:AF=DE;②若正方形的邊長為2,當(dāng)∠DOE=15176。∠AOD=90176?!摺螮PF=90176?!唷螪OE=∠AOF,在△AOF和△DOE中,∴△AOF≌△DOE,∴AF=DE;②解:過點O作OG⊥AB于G,∵正方形的邊長為2,∴OG=BC=,∵∠DOE=15176?!唷螰OG=45176。=30176?!郒P=BP,∵BD=3BP,∴PD=2BP,∴PD=2HP,又∵∠HPF+∠HPE=90176。∴∠HPF=∠DPE,又∵∠BHP=∠EDP=45176。<α<180176?;?5176?;?35176。.【解析】【分析】(1)由四邊形OEFG是正方形,得到ME=GE,根據(jù)三角形的中位線的性質(zhì)得到CD∥GE,CD=GE,求得CD=GE,即可得到結(jié)論;(2)如圖2,延長E′D交AG′于H,由四邊形ABCD是正方形,得到AO=OD,∠AOD=∠COD=90176。由旋轉(zhuǎn)的性質(zhì)得到∠G′OD=∠E′OC,求得∠AOG′=∠COE′,根據(jù)全等三角形的性質(zhì)得到AG′=DE′,∠AG′O=∠DE′O,即可得到結(jié)論;(3)分類討論,根據(jù)三角形的外角的性質(zhì)和等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)證明:∵四邊形OEFG是正方形,∴ME=GE,∵OG=2OD、OE=2OC,∴CD∥GE,CD=GE,∴CD=GE,∴四邊形CDME是平行四邊形;(2)證明:如圖2,延長E′D交AG′于H,∵四邊形ABCD是正方形,∴AO=OD,∠AOD=∠COD=90176?!邔⒄叫蜲EFG繞點O逆時針旋轉(zhuǎn),得到正方形OE′F′G′,∴∠G′OD=∠E′OC,∴∠AOG′=∠COE′,在△AG′O與△ODE′中,∴△AG′O≌△ODE′∴AG′=DE′,∠AG′O=∠DE′O,∵∠1=∠2,∴∠G′HD=∠G′OE′=90176?!唷螦NO=∠AON=176?!唳?∠ANO∠ADO=176?!唷螦NO=90176。45176。;②正方形OE′F′G′的邊OG′與正方形ABCD的邊AB相交于點N,如圖4,Ⅰ、當(dāng)AN=AO時,∵∠OAN=45176?!摺螦DO=45176。=176?!唷螦NO=90176。+45176。Ⅲ、當(dāng)AN=AO時,旋轉(zhuǎn)角a=∠ANO+90176。綜上所述:若△AON是等腰三角形時,176。176。176。AB=4,點D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的,請直接寫出△ABC的面積.【答案】(1)見解析;(2)12;探究:2或2.【解析】試題分析:(1)利用一組對邊平行且相等的四邊形是平行四邊形,得到四邊形ABFE是平行四邊形,然后根據(jù)平行四邊形的性質(zhì)證得OE=OB,即可證得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中點,則可以求得△ABE、△ABF的面積,根據(jù)S四邊形CDOF=S矩形ABCD2S△ABF即可求解.探究:畫出符合條件的兩種情況:①求出四邊形A′DCB是平行四邊形,求出BC和A′D推出∠ACB=90176。∴BM=AB=2=BC,即C和M重合,∴∠ACB=90176?!郈Q=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2A′DCQ=221=2;即△ABC的面積是2或2.考點:四邊形綜合題.12.如圖,現(xiàn)將平行四邊形ABCD沿其對角線AC折疊,使點B落在點B′處.AB′與CD交于點E.(1)求證:△AED≌△CEB′;(2)過點E作EF⊥AC交AB于點F,連接CF,判斷四邊形AECF的形狀并給予證明.【答案】(1)見解析(2)見解析【解析】【分析】(1)由題意可得AD=BC=B39。且∠AED=∠CEB39。C,∠B=∠B39。AD=B39。EC∴△ADE≌△B39。EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四邊形AECF是菱形【點睛】本題考查了折疊問題,全等三角形的判定和性質(zhì),平行四邊形的性質(zhì),菱形的判定,熟練掌握這些性質(zhì)和判定是解決問題的關(guān)鍵.13.在正方形ABCD中,動點E,F(xiàn)分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動.(1)如圖①,當(dāng)點E自D向C,點F自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的位置關(guān)系,并說明理由;(2)如圖②,當(dāng)E,F(xiàn)分別移動到邊DC,CB的延長線上時,連接AE和DF,(1)中的結(jié)論還成立嗎?(請你直接回答“是”或“否”,不須證明)(3)如圖③,當(dāng)E,F(xiàn)分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結(jié)論還成立嗎?請說明理由;(4)如圖④,當(dāng)E,F(xiàn)分別在邊DC,CB上移動時,連接AE和DF交于點P,由于點E,F(xiàn)的移動,使得點P也隨之運(yùn)動,請你畫出點P運(yùn)動路徑的草圖.若AD=2,試求出線段CP的最小值.【答案】(1)AE=DF,AE⊥DF;(2)是;(3)成立,理由見解析;(4)CP=QC﹣QP=.【解析】試題分析:(1)AE=DF,AE⊥DF.先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四邊形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90176?!螪AE+∠ADF=90176。所以點P的路徑是一段以AD為直徑的弧,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.試題解析:(1)AE=DF,AE⊥DF.理由:∵四邊形ABCD是正方形,∴AD=DC,∠ADC=∠C=90176。∴∠DAE+∠ADF=90176?!唷螦DG+∠DAE=90176?!帱cP的路徑是一段以AD為直徑的弧,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC﹣QP=.考點:四邊形的綜合知識.14.正方形ABCD的邊長為1,對角線AC與BD相交于點O,點E是AB邊上的一個動點(點E不與點A、B重合),CE與BD相交于點F,設(shè)線段BE的長度為x.(1)如圖1,當(dāng)AD=2OF時,求出x的值;(2)如圖2,把線段CE繞點E順時針旋轉(zhuǎn)90176。∴∠ECB=∠PEG,∵PE=EC,∠EGP=∠CBE=90176。;(2)①2;②2【解析】試題分析:(1)根據(jù)SAS,可首先證明△AEC≌△ABD,再利用全等三角形的性質(zhì),可得對應(yīng)角相等,根據(jù)三角形的外角的定理,可求出∠BFC的度數(shù);(2)①如圖2,在△ABC外作等邊△BAE,連接CE,利用旋轉(zhuǎn)法證明△EAC≌△BAD,可證∠EBC=90176?!唷螮AC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,∴∠EAC=∠DAB,在△AEC和△ABD中∴△AEC≌△ABD(SAS),∴∠AEC=∠ABD,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,∴∠BFC=∠AEB+∠ABE=120176。;(2)①如圖2,以AB為邊在△ABC外作正三角形ABE,連接CE.由(1)可知△EAC≌△BAD.∴EC=BD.∴EC=BD=6,∵∠BAE=60176?!唷螮BC=90176?!鰽BC的面積不變化,以下證明:如圖2,作AH⊥BC交BC于H,過點B作BE∥AH,并在BE上取BE=2AH,連接EA,EC.并取BE的中點K,連接AK.∵AH⊥BC于H,∴∠AHC=90176。.∵∠EBC=90176。∴四邊形AKBH為矩形.∠ABE=∠ACD,∴∠AKB=9
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1