【摘要】初中數(shù)學(xué)八年級(jí)上冊(cè)(蘇科版)思考⑴軸對(duì)稱與軸對(duì)稱圖形有怎樣的聯(lián)系與區(qū)別?⑵比照軸對(duì)稱與軸對(duì)稱圖形的關(guān)系,你認(rèn)為什么樣的圖形是中心對(duì)稱圖形?你對(duì)線段有哪些認(rèn)識(shí)?ABADBC你對(duì)平行四邊形有哪些認(rèn)識(shí)?把一個(gè)平面圖形繞某一點(diǎn)旋轉(zhuǎn)1800,如果它能夠與原來圖形重合,那么這個(gè)圖形叫做中心
2025-02-02 03:54
【摘要】太極圖1010撲克牌撲克牌圖中的圖形有怎樣的特點(diǎn)呢?太極圖1010撲克牌撲克牌A1B1C1A2B2C2O做一做以風(fēng)車的風(fēng)輪為例,繞點(diǎn)O旋轉(zhuǎn)的風(fēng)輪,使得A1移動(dòng)到A2的位置。思考下面的問題:(1)旋轉(zhuǎn)后的風(fēng)輪與原來位置上的風(fēng)輪是否重合?(
2025-02-02 14:16
【摘要】中心對(duì)稱圖形一、選擇題(繞著它的中點(diǎn)旋轉(zhuǎn)180°后與原線段重合,那么線段是中心對(duì)稱圖形120°后與原圖形重合,那么正三角形是中心對(duì)稱圖形90°后與原圖形重合,則正方形是中心對(duì)稱圖形72°后與原圖形重合,則正五角星是中心對(duì)稱圖形,而不是軸對(duì)稱圖形的是()
2025-02-05 03:03
【摘要】(1)這些圖形有什么共同的特點(diǎn)?都是旋轉(zhuǎn)對(duì)稱圖形。(2)這些圖形分別繞旋轉(zhuǎn)中心旋轉(zhuǎn)多少度后與自身重合?第一個(gè)圖形的旋轉(zhuǎn)角度為120°或240°第二個(gè)圖形的旋轉(zhuǎn)角度為72°或144°或216°或288°第三個(gè)圖形的旋轉(zhuǎn)角度為90°或180°或2
2025-01-15 17:03
【摘要】中心對(duì)稱與中心對(duì)稱圖形(2)班級(jí)姓名學(xué)號(hào)學(xué)習(xí)目標(biāo)比照軸對(duì)稱與軸對(duì)稱圖形的關(guān)系,認(rèn)識(shí)中心對(duì)稱圖形,知道中心對(duì)稱圖形的性質(zhì)學(xué)習(xí)難點(diǎn)⒈中心對(duì)稱圖形與軸對(duì)稱圖形的區(qū)別;⒉利用中心對(duì)稱圖形的有關(guān)概念和基本性質(zhì)解決問題。教學(xué)過程
2025-01-23 00:17
【摘要】數(shù)學(xué)的對(duì)稱美是客觀世界的一個(gè)側(cè)面的反映.哥白尼說:“在這種有條不紊的安排之下,宇宙中存在著奇妙的對(duì)稱……”.對(duì)稱是廣義的,字母的對(duì)稱,結(jié)構(gòu)的對(duì)稱,圖形的對(duì)稱,解法的對(duì)稱……無論哪種對(duì)稱,都是美好的.,...
2024-11-19 00:34
【摘要】初中數(shù)學(xué)八年級(jí)上冊(cè)(蘇科版)(2)思考⑴軸對(duì)稱與軸對(duì)稱圖形有怎樣的聯(lián)系與區(qū)別?⑵比照軸對(duì)稱與軸對(duì)稱圖形的關(guān)系,你認(rèn)為什么樣的圖形是中心對(duì)稱圖形?你對(duì)線段有哪些認(rèn)識(shí)?AB線段旋轉(zhuǎn)ADBC平旋轉(zhuǎn)你對(duì)平行四邊形有哪些認(rèn)識(shí)?把一個(gè)平面圖形繞某一點(diǎn)旋轉(zhuǎn)1800,如果它能夠
【摘要】一、知識(shí)點(diǎn):1、圖形的旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)旋轉(zhuǎn)一定的角度,這樣的圖形運(yùn)動(dòng)稱為圖形的旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,旋轉(zhuǎn)的角度稱為旋轉(zhuǎn)角。旋轉(zhuǎn)前、后的圖形全等。對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。每一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角彼此相等。2、中心對(duì)稱:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖
2025-02-10 02:28
【摘要】第一篇:中心對(duì)稱和中心對(duì)稱圖形數(shù)學(xué)教案 中心對(duì)稱和中心對(duì)稱圖形數(shù)學(xué)教案 1.中心對(duì)稱 把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn),如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心,...
2024-11-15 01:10
【摘要】請(qǐng)觀察下面的圖形是不是我們以前學(xué)過的軸對(duì)稱圖形?若是請(qǐng)畫出它的對(duì)稱軸.欣賞圖片,尋找其共同點(diǎn)在實(shí)際生活中,不僅有折疊、還有旋轉(zhuǎn),以上圖形旋轉(zhuǎn)180°后,都能轉(zhuǎn)到與它相對(duì)的位置上,并且與原來的圖互相重合。(1)把其中一個(gè)圖案繞點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?重合重合觀察
2025-01-31 01:13
【摘要】中心對(duì)稱與中心對(duì)稱圖形小雄中學(xué)數(shù)學(xué)組張安明一.知識(shí)回顧:把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)1800,如果它能與另一個(gè)圖形重合,就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱.2.中心對(duì)稱的性質(zhì):⑴關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形⑵關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中
2025-01-15 17:37
【摘要】例.如圖,已知:矩形ABCD和矩形關(guān)于A點(diǎn)對(duì)稱.求證:四邊形是菱形.名稱中心對(duì)稱圖形軸對(duì)稱圖形定義一般地,在同一平面內(nèi),一個(gè)圖形繞某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前、后的圖形相互重合,那么這個(gè)圖形叫做中心對(duì)
2025-01-29 21:03
【摘要】(1)把其中一個(gè)圖案繞點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?重合重合觀察(2)線段AC,BD相交于點(diǎn)O,OA=OC,OB=△OCD繞點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?ACBADE像這樣把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度,如果它能夠和另一個(gè)圖
2025-01-12 21:32
【摘要】中心對(duì)稱圖形義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書九年級(jí)上冊(cè)一教材的地位與作用這一節(jié)課與圖形的三種運(yùn)動(dòng)(平移、翻折、旋轉(zhuǎn))之一的“旋轉(zhuǎn)”有著不可分割的聯(lián)系,通過對(duì)這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生認(rèn)識(shí)圖形的三種基本運(yùn)動(dòng)中“旋轉(zhuǎn)”在幾何知識(shí)中的重要體現(xiàn),同時(shí)也完善了初中部分對(duì)“對(duì)稱圖形”(軸對(duì)稱圖形、中心對(duì)稱圖形)的知識(shí)講授,
2024-08-28 07:20
【摘要】中心對(duì)稱圖形(1)觀察下列圖形看看它們有沒有共同的特征?(2)你能將下圖中的“風(fēng)車”繞其上的一點(diǎn)旋轉(zhuǎn)180度,使旋轉(zhuǎn)前后的圖形完全重合嗎?正六邊形呢?A上圖繞中心旋轉(zhuǎn)180度與原圖重合中心對(duì)稱圖形的定義?在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形相互重合,那么這個(gè)圖形叫做中心對(duì)稱圖形。這個(gè)點(diǎn)叫做
2024-09-02 03:41