【摘要】課題:向量的數(shù)乘(1)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、理解向量數(shù)乘的含義,掌握向量數(shù)乘的運(yùn)算律;2、理解數(shù)乘的運(yùn)算律與實(shí)數(shù)乘法的運(yùn)算律的區(qū)別與聯(lián)系?!菊n前預(yù)習(xí)】1、質(zhì)點(diǎn)從點(diǎn)O出發(fā)做勻速直線運(yùn)動(dòng),若經(jīng)過s1的位移對(duì)應(yīng)的向量用a?表示,那么在同方
2025-02-07 00:28
【摘要】函數(shù)sin()yAx????的圖像(1)【學(xué)習(xí)目標(biāo)】:1、了解函數(shù)sin()yAx????的實(shí)際意義;2、弄清,,A??與函數(shù)sin()yAx????的圖像之間的關(guān)系;3、會(huì)用五點(diǎn)法畫函數(shù)sin()yAx????的圖像;【重點(diǎn)難點(diǎn)】:五點(diǎn)法畫函數(shù)sin()yAx????的圖像一、預(yù)
2025-01-31 16:30
【摘要】§數(shù)乘向量(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1、實(shí)數(shù)λ與向量a的乘積是一個(gè)向量,記作;|a?|=。2、a?的方向當(dāng)λ0時(shí),與a;當(dāng)λ<
2025-01-21 16:44
【摘要】撰稿教師:李麗麗自學(xué)目標(biāo),并理解其幾何意義。2.理解和應(yīng)用向量數(shù)乘的運(yùn)算律。學(xué)習(xí)過程一、※課前準(zhǔn)備(預(yù)習(xí)教材86頁(yè)~87頁(yè),找出疑惑之處)二、※新課導(dǎo)學(xué)1.?dāng)?shù)乘定義:______________________是一個(gè)向量,記作a?,它的長(zhǎng)度與方向規(guī)定如下:(1)||a?=____
【摘要】弧度制【學(xué)習(xí)目標(biāo)】1.理解弧度制的意義,能正確地進(jìn)行弧度與角度的換算,熟記特殊角的弧度數(shù)2.掌握弧度制下的弧長(zhǎng)公式和扇形的面積公式,會(huì)利用弧度制解決某些簡(jiǎn)單的實(shí)際問題3.了解角的集合與實(shí)數(shù)集之間可以建立起一一對(duì)應(yīng)的關(guān)系【學(xué)習(xí)重點(diǎn)、難點(diǎn)】弧度的概念,弧度與角度換算【自主學(xué)習(xí)】一、復(fù)習(xí)引入請(qǐng)同學(xué)們回
2025-01-22 12:32
【摘要】函數(shù)sin()yAx????的圖像(2)【學(xué)習(xí)目標(biāo)】:1.能由正弦函數(shù)的圖象通過變換得到sin()yAx????的圖象;2.會(huì)根據(jù)函數(shù)圖象寫出解析式;3.能根據(jù)已知條件寫出sin()yAx????中的待定系數(shù)A,?,?.【重點(diǎn)難點(diǎn)】:根據(jù)函數(shù)圖象寫出解析式一、預(yù)習(xí)指導(dǎo)sin(
2025-01-22 12:31
【摘要】第一篇:高中數(shù)學(xué)向量的數(shù)乘教案新人教A版必修1 江蘇省連云港灌云縣第一中學(xué)高中數(shù)學(xué)向量的數(shù)乘教案新 人教A版必修1 教學(xué)目標(biāo): 1.理解向量數(shù)乘的含義及向量數(shù)乘的運(yùn)算律; 2.培養(yǎng)學(xué)生在學(xué)習(xí)...
2024-10-28 16:29
【摘要】2.1.4數(shù)乘向量一.學(xué)習(xí)要點(diǎn):數(shù)乘向量、向量共線和三點(diǎn)共線的判斷。二.學(xué)習(xí)過程:一、復(fù)習(xí)引入:1、向量的加法:2、向量的減法:二、講解新課:1、實(shí)數(shù)與向量的積引例1:已知非零向量a,作出aaa??和)()(aa???。探究:相同向量相加后,和的長(zhǎng)度與方向有什么變化?定義:實(shí)數(shù)λ與向量a的積是
2025-01-30 23:46
【摘要】空間向量的數(shù)乘運(yùn)算【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.掌握空間向量的數(shù)乘運(yùn)算律,能進(jìn)行簡(jiǎn)單的代數(shù)式化簡(jiǎn);2.理解共線向量定理和共面向量定理及它們的推論;3.能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問題.【重點(diǎn)】能用空間向量的運(yùn)算意義
2025-01-21 16:52
【摘要】任意角的三角函數(shù)(1)【學(xué)習(xí)目標(biāo)】1.掌握任意角三角函數(shù)的定義,并能借助單位圓理解任意角三角函數(shù)的定義2.會(huì)用三角函數(shù)線表示任意角三角函數(shù)的值3.掌握正弦、余弦、正切函數(shù)的定義域和這三種函數(shù)的值在各象限的符號(hào)【學(xué)習(xí)重點(diǎn)、難點(diǎn)】任意角的正弦、余弦、正切的定義【自主學(xué)習(xí)】一、復(fù)習(xí)舊知,導(dǎo)入新課在初中,我
【摘要】三角函數(shù)的誘導(dǎo)公式(1)【學(xué)習(xí)目標(biāo)】1、鞏固理解三角函數(shù)線知識(shí),并能用三角函數(shù)線推導(dǎo)誘導(dǎo)公式2、能正確運(yùn)用誘導(dǎo)公式求出任意角的三角函數(shù)值3、能通過公式的運(yùn)用,了解未知到已知、復(fù)雜到簡(jiǎn)單的轉(zhuǎn)化過程4、準(zhǔn)確記憶并理解誘導(dǎo)公式,靈活運(yùn)用誘導(dǎo)公式求值口訣:函數(shù)名不變,符號(hào)看象限【重點(diǎn)難點(diǎn)】誘導(dǎo)公式的推導(dǎo)與運(yùn)用
【摘要】三角函數(shù)的應(yīng)用【學(xué)習(xí)目標(biāo)】:,體會(huì)三角函數(shù)是描述周期現(xiàn)象的重要模型..【重點(diǎn)難點(diǎn)】:建立三角函數(shù)的模型一、預(yù)習(xí)指導(dǎo)1、三角函數(shù)可以作為描述現(xiàn)實(shí)世界中____________________________現(xiàn)象的一種數(shù)學(xué)模型.2、利用三角函數(shù)解決實(shí)際問題的一般步驟:(1)審題,獲取有用信息;(2)構(gòu)建三角函數(shù)
2025-01-31 16:29
【摘要】同角三角函數(shù)的關(guān)系(1)【學(xué)習(xí)目標(biāo)】1、掌握同角三角函數(shù)的兩個(gè)基本關(guān)系式2、能準(zhǔn)確應(yīng)用同角三角函數(shù)關(guān)系進(jìn)行化簡(jiǎn)、求值3、對(duì)于同角三角函數(shù)來說,認(rèn)清什么叫“同角”,學(xué)會(huì)運(yùn)用整體觀點(diǎn)看待角4、結(jié)合三角函數(shù)值的符號(hào)問題,求三角函數(shù)值【重點(diǎn)難點(diǎn)】同角三角函數(shù)的兩個(gè)基本關(guān)系式和應(yīng)用【自主學(xué)習(xí)】一、數(shù)學(xué)建構(gòu):
【摘要】自學(xué)目標(biāo)1、在理解向量共線的概念的基礎(chǔ)上,學(xué)習(xí)用坐標(biāo)表示向量共線的條件。2、利用向量共線的坐標(biāo)表示解決有關(guān)問題。學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材103頁(yè)~104頁(yè),找出疑惑之處)二、新課導(dǎo)學(xué)1、若//(0)abb?則存在唯一實(shí)數(shù)?使;反之,若存在唯一實(shí)數(shù)?,使,則//
【摘要】aBAOlP空間向量的數(shù)乘運(yùn)算【學(xué)習(xí)目標(biāo)】理解空間向量共線、共面的充要條件【自主學(xué)習(xí)】1.共線向量與平面向量類似,如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量,記作ba??//.當(dāng)向量a?、b?共線(或a?//b?)時(shí),表示a?、b
2025-02-07 06:40