freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

人教版知識點總結(jié)-全面整理下載-在線瀏覽

2025-01-20 06:21本頁面
  

【正文】 利潤率 ; ( 6)周長、面積、體積問題: C 圓 =2π R, S 圓 =π R2, C 長方形 =2(a+b), S 長方形 =ab, C 正方形 =4a, S 正方形 =a2, S 環(huán)形 =π (R2r2),V 長方體 =abc , V 正方體 =a3, V 圓柱 =π R2h , V 圓錐 =31π R2h. 本章內(nèi)容是代數(shù)學(xué)的核心,也是所有 代數(shù)方程的基礎(chǔ)。 第四章 圖形的認(rèn)識初步 知識框架 6 本章的主要內(nèi)容是圖形的初步認(rèn)識,從生活周圍熟悉的物體入手,對物體的形狀的認(rèn)識從感性逐步上升到抽象的幾何圖形 .通過從不同方向看立體圖形和展開立體圖形,初步認(rèn)識立體圖形與平面圖形的聯(lián)系 .在此基礎(chǔ)上,認(rèn)識一些簡單的平面圖形 —— 直線、射線、線段和角 . 本章書涉 及的數(shù)學(xué)思想: 。 。 。在處理圖形時應(yīng)注意轉(zhuǎn)化思想的應(yīng)用,如立體圖形與平面圖形的互相轉(zhuǎn)化。在進行直線、線段、角以及相關(guān)圖形的計數(shù)時,總要劃歸到公式 n(n1)/2 的具體運用上來。 第五章 相交線與平行線 一 、知識 框架 7 二 、 知識概念 :兩條直線相交所構(gòu)成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。 :兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。 、內(nèi)錯角、同旁內(nèi)角: 兩條直線被第三條直線所截所形 成的八個角中,有四對同位角,兩對內(nèi)錯角,兩對同旁內(nèi)角。 內(nèi)錯角:∠ 4 與∠ 6 像這樣的一對角叫做內(nèi)錯角。 8:判斷一件事情的語句叫命題。 :平移后得到的新圖形中每一點,都是由原圖形中的某一 點移動后得到的,這樣的兩個點叫做對應(yīng)點。 10 垂線的性質(zhì): 性質(zhì) 1:過一點有且只有一條直線與已知直線垂直。 :經(jīng)過直線外一點有且只有一條直線與已知直線平行。 : 性質(zhì) 1:兩直線平行,同位角相等。 性質(zhì) 3:兩直線平行,同旁內(nèi)角互補。 判定 2:內(nèi)錯角相等,兩直線平行。 本章使學(xué)生了解在平面內(nèi)不重合的兩條直線相交與平行的兩種位置關(guān)系 ,研究了兩條直線相交時的形成的角的特征 ,兩條直線互相垂直所具有的特性 ,兩條直線平行的長期共存條件和它所有的特征以及有關(guān)圖形平移變換的性質(zhì) ,利用平移設(shè)計一些優(yōu)美的圖案 . 重點 :垂線和它的性質(zhì) ,平行線的判定方法和它的性質(zhì) ,平移和它的性質(zhì) ,以及這些的組織運用 . 難點 :探索平行線的條件和特征 ,平行線條件與特征的區(qū)別 ,運用平移性質(zhì)探索圖形之間的平移關(guān)系 ,以及進行圖 案設(shè)計 。 、縱軸、原點:水平的數(shù)軸稱為 x 軸或橫軸;豎直的數(shù)軸稱為 y 軸或縱軸;兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。 :兩條坐標(biāo)軸把平 面分成四個部分,右上部分叫第一象限,按逆時針方向 依 次叫第二象限、第三象限、第四象限。 平面直角坐標(biāo)系是數(shù)軸由一維到二維的過渡,同時它又是學(xué)習(xí)函數(shù)的基礎(chǔ),起到承上啟下的作用。掌握本節(jié)內(nèi)容對以后學(xué)習(xí)和生活有著積極的意義。 第 七章 三角形 一.知識框架 二.知識概 念 :由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。 :從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。 :三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。 : 在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。 多邊形內(nèi)角和定理 :n 邊形的內(nèi)角的和等于: ( n - 2) 180176。247。180176。 所以 n邊形的內(nèi)角和是 n178。 2179。= ( n2) 178。. 即 n 邊形的內(nèi)角和等于( n2) 179。. 證法二:連結(jié)多邊形的任一頂點 A1與其他各個頂點的線段,把 n 邊形分成( n2)個三角形 . 因為這( n2)個三角形的內(nèi)角和都等于( n2) 178。 所以 n邊形的內(nèi)角和是( n2) 179。. 證法三:在 n邊形的任意一邊上任取一點 P,連結(jié) P 點與其它各頂點的線段可以把 n 邊形分成( n1)個三角形, 這( n1)個三角形的內(nèi)角和等于( n1) 178。 以 P 為公共頂點的( n1)個角的和是 180176。 180176。= ( n2) 178。. 已知 正 多邊形內(nèi)角度數(shù)則其邊數(shù)為: 360247。 外角和 =N*180( N2) *180=360 度。當(dāng)考慮角度方向的時候,上面的論述也適合凹多邊形。 :在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形。 鑲嵌的一個關(guān)鍵點是:在每個公共頂點處,各角的和是 360176。用 6 個全等的三角形即可鑲嵌出一個平面.如圖 1.用全等的三角形鑲嵌平面,鑲嵌的方法不止一種,如圖 2. 2.全等的任意四邊形能鑲嵌平面。用 4 個全等的四邊形即可鑲嵌出一個平面.如圖 3.其實四邊形的平面鑲嵌可看成是用兩類全等的三角形進行鑲嵌.如圖 4. 3.全等的特殊五邊形可鑲嵌平面 圣地亞歌一位家庭婦女,五個孩子的母親瑪喬里 賴斯后來又找到了 5 類五邊形能鑲嵌平面,在圖 5 的五邊形ABCDE 中, ∠ B=∠ E=90176。 a=e, a+ e=d.圖 6 是她于1977 年 12 月找到的一種用此五邊形鑲嵌的方法.用五邊形鑲嵌平面,是否只有 13 類,還有待研究. 4.全等的特殊六邊形可鑲嵌平面 1918 年, 萊因哈特 證明了只有 3 類六邊形能鑲嵌 平面.圖 7 是其中之一.在圖 7的六邊形 ABCDEF 中, ∠ A+ ∠ B+ ∠ C=360176。正六邊形的每個角是 120176。60176。120176。即 m+ 2n=6. 這個方程的正整數(shù)解 或 可見用正三角形和正六邊形鑲嵌,有兩種類型,一種是在一個頂點的周圍有 4 個正三角形和 1 個正六邊形,另一種是在一個頂點的周圍有 2 個正三角形和 2 個正六邊形. 埃舍爾 _百度百科 三角形的內(nèi)角和:三角形的內(nèi)角和為 180176。 性質(zhì) 2:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。 180176。 12 多邊形對角線的條數(shù):( 1)從 n邊形的一個頂點出發(fā)可以引( n3)條對角線,把多邊形分詞( n2)個三角形。 三角形 是 初中數(shù)學(xué)中幾何部分的 基礎(chǔ)圖形,在學(xué)習(xí)過程中,教師應(yīng)該多鼓勵學(xué)生動腦動手,發(fā)現(xiàn)和探索其中的知識奧秘。 第八章 二元一次方程組 一. 知識結(jié)構(gòu)圖 二 、知識 概念 :含有兩個未知數(shù),并且未知數(shù)的指數(shù)都是 1,像這樣的方程叫做二元一次 。 :把兩個二元一次方程合在一起,就組成了一個二元一次方程組。 :一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組。 :將一個未知數(shù)用含有另一個未知數(shù)的式子表示出來,再代入另一個方程,實現(xiàn)消元,進而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。 本章通過實例引入二元一次方程 ,二元一次方程組以及二元一次方程組的概念 ,培養(yǎng)學(xué)生對概念的理解和完整性和深刻性 ,使學(xué)生掌握好二元一次方程組的兩種解法 . 重點 :二元一次方程組的解法 ,列二元一次方程組解決實際問題 . 難點 :二元一次方程組解決實際問題 13 第九章 不等式與不等式組 一.知識框架 二 、知識 概念 “<”“>”“≤ ”“≥”表示大小關(guān)系的式子叫做不等式。 :一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。 :一般地,關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起,就組成。 不等式的基本性質(zhì) 2:不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變。 本章內(nèi)容要求學(xué)生經(jīng)歷建立一元一次不等式(組)這樣的數(shù)學(xué)模型并應(yīng)用它解決實際問題的過程,體會不等式(組)的特點和作用,掌握運用它們解決問題的一般 方法,提高分析問題、解決問題的能力,增強創(chuàng)新精神和應(yīng)用數(shù)學(xué)的意識。 :調(diào)查部分?jǐn)?shù)據(jù),根據(jù)部分來估計總體的調(diào)查方式稱為抽樣調(diào)查。 :組成總體的每一個考察對象稱為個體。 :樣本中個體的數(shù)目稱為樣本容量。 :頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率。 本章要求 通過實際參與收集、整理、描述和分析數(shù)據(jù)的活動,經(jīng)歷統(tǒng)計的一般過程,感受統(tǒng)計在生活和生產(chǎn)中的作用,增強學(xué)習(xí)統(tǒng)計的興趣,初步建立統(tǒng)計的觀念,培養(yǎng)重視調(diào)查研究的良好習(xí)慣和科學(xué)態(tài)度。 第 十一章 全等三角形 一. 知識框架 全面調(diào)查 抽樣調(diào)查 收集數(shù)據(jù) 描述數(shù)據(jù) 整理數(shù)據(jù) 分析數(shù)據(jù) 得出結(jié)論 15 二. 知識概念 : 兩個三角形的形狀、大小、都一樣時,其中一個可以經(jīng)過平移、旋轉(zhuǎn)、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形 。 : ( 1) “邊角邊 ”簡稱 “SAS” ( 2) “角邊角 ”簡稱 “ASA” ( 3) “邊邊邊 ”簡稱 “SSS” ( 4) “角角邊 ”簡稱 “AAS” ( 5) 斜邊和直角邊相等的兩直角三角形( HL)。 :角的內(nèi)部到角的兩邊的距離相等的點在 角 的平分線上。通過直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。 第十二章 軸對稱 一. 知識框架 16 )( 無限不循環(huán)小數(shù)負(fù)有理數(shù)正有理數(shù)無理數(shù) ?????????????????????????)()32,21()32,21()()3,2,1()3,2,1,0(無限循環(huán)小數(shù)有限小數(shù)整數(shù)負(fù)分?jǐn)?shù)正分?jǐn)?shù)小數(shù)分?jǐn)?shù)負(fù)整數(shù)自然數(shù)整數(shù)有理數(shù) 、?????????????????實數(shù)二. 知識概念 :如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做 軸對稱圖形 ;這條直線叫做 對稱軸 。 ( 2) 角平分線上的點到角兩邊距離相等。 ( 4) 與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。 :等腰三角形的兩個底角相等, (等邊對等角) 、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。 角 的 特點: 三個內(nèi)角相等,等于 60176。 有一個角是 60176。的三角形是等邊三角形。角所對的直角邊等于斜邊的一半。 本章內(nèi)容要求學(xué)生在建立在軸對稱概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進行分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來解決一些數(shù)學(xué)問題。 0 的算術(shù)平方根為 0;從定義可知,只有當(dāng) a≥ 0 時 ,a 才有算術(shù)平方根。 (一正一負(fù))它們互為相反數(shù); 0 只有一個平方根,就是它本身;負(fù)數(shù)沒有平方根。 a 的相反數(shù)是 a,一個正實數(shù)的絕對 值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù), 0 的絕對值是 0 17 ? ?? ?? ?321000.0k ?????????bbb? ?? ?? ?321000.0k ?????????bbb? ? )0,0(0,0 ??????? babababaabba 實數(shù)部分主要要求學(xué)生 了解無理數(shù)和實數(shù)的概念,知道實數(shù)和數(shù)軸上的點一一對應(yīng),能估算無理數(shù)的大??;了解實數(shù)的運算法則及運算律,會進行實數(shù)的運算。 第十四章 一次函數(shù) 一 .知識框架 二. 知識概念 :若兩個變量 x,y 間的關(guān)系式可以表示成 y=kx+b(k≠ 0)的形式 ,則稱 y 是 x 的一次函數(shù) (x為自變量 ,y 為因變量 )。 例 函數(shù)一般式: y=kx( k≠ 0),其圖象是經(jīng)過原點 (0,0)的一條直線。 當(dāng) k0時 ,y 隨 x的增大而減小。在學(xué)習(xí)本章內(nèi)容時,教師應(yīng)該多從實際問題出發(fā),引出變量,從具體到抽象的認(rèn)識事物。在教學(xué)過 程中,應(yīng)更加側(cè)重于理解和運用,在解決實際問題的同時,讓學(xué)習(xí)體會到數(shù)學(xué)的實用價值和樂趣。 ( 2) 單項式與多項式相乘 :單項式乘以多項式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項 式的每一項,再把所得的積相加。 4. 平方差公式 : 22))(( bababa ???? 5. 完全平方公式 : 222 2)( bababa ???? 6. 同底數(shù)冪的除法法則 :同底數(shù)冪相除 ,底數(shù)不變 ,指數(shù)相減 ,即 nmnm aaa ??? (a≠ 0,m、 n都是正數(shù) ,且 mn). 在應(yīng)用時需要注意以下幾點 : ①法則使用的前提條件是 “同底數(shù)冪相除 ”而且 0 不能做除數(shù) ,所以法則中 a≠ 0. ②任何不等于 0
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1