freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

圓鄰域和方鄰域-在線瀏覽

2024-09-15 04:24本頁面
  

【正文】 綿陽師范學(xué)院 ( 2)外點 : 若存在點 A 的某鄰域 ? ?UA , 使得 ? ?U A E ?= ,則稱 點 A 是點集 E 的外點 . EA若在點 A 的任何鄰域內(nèi)既含有屬于 E 的點,又含有不屬于 E的點,則稱 A 是 集合 E 的界點 . ( 3)界點 : EA?點 A 本身可以屬于 E ,也可以不屬于 E . E 的全體界點構(gòu)成 E 的邊界 , 記作 E? . 上頁 下頁 鈴 結(jié)束 返回 首頁 Mathematical Analysis 綿陽師范學(xué)院 y x o 1 1 D D = {(x, y)| x2 + y2 ?1 } 例如 圓 內(nèi)部 的每一個點都是 D 的 內(nèi)點; 圓 周上 的點都是 D 的 界點 。 2 二元函數(shù)的極限 167。上頁 下頁 鈴 結(jié)束 返回 首頁 Mathematical Analysis 綿陽師范學(xué)院 167。 1 平面點集與多元函數(shù) 167。 3 二元函數(shù)的連續(xù)性 第十六章 多元函數(shù)的極限與連續(xù) 上頁 下頁 鈴 結(jié)束 返回 首頁 Mathematical Analysis 綿陽師范學(xué)院 167。 圓 外部 的點都是 D 的 外點 . 提問 E的內(nèi)點,外點,界點與 E的關(guān)系是什么? 上頁 下頁 鈴 結(jié)束 返回 首頁 Mathematical Analysis 綿陽師范學(xué)院 4.(以凝聚程度分為 )聚點和孤立點 聚點 設(shè) E 是平面上的一個點集, A 是平面上的一個點 若在點 A 的任何空心鄰域 ? ?0UA 內(nèi) 都含有 E 中的點, 則稱 A 是 E 的聚點 . 聚點本身可能屬于 E , 也可能不屬于 E . 上頁 下頁 鈴 結(jié)束 返回 首頁 Mathematical Analysis 綿陽師范學(xué)院 從幾何上看 , 所謂 A是 E 的聚點是指在 A 的附近聚集了無限多個 E中的點 . 即在 A的任意近傍都有無限多個 E 中的點 . A ? 上頁 下頁 鈴 結(jié)束 返回 首頁 Mathematical Analysis 綿陽師范學(xué)院 ( 3) 點集 E 的聚點可以屬于 E,也可以不屬于 E. }10|),{( 22 ??? yxyx例如 , (0, 0) 是聚點但不屬于集合. }1|),{( 22 ?? yxyx例如 , 邊界上的點都是聚點也都屬于集合. ( 1) 內(nèi)點一定是聚點; 說明: ( 2) 邊界點可能是聚點; }10|),{( 22 ??? yxyx例如, (0, 0) 既是 邊界點也是聚點. 上頁 下頁 鈴 結(jié)束 返回 首頁 Mathematical Analysis 綿陽師范學(xué)院 1. 孤立點必為界點 . 孤立點 若點 ,AE ? 但不是 E 的聚點,即存在某一正數(shù) ,? 使得 ? ?0 。 (1) 開集與閉集的對偶性 (2) 設(shè) F1, F2 為閉集,則 F1∪ F2 和 F1∩ F2 都是閉集 。 (4) F為閉集, E為開集,則 F\E為閉集, E\F為開集 . 上頁 下頁 鈴 結(jié)束 返回 首頁 Mathematical Analysis 綿陽師范學(xué)院 ( 1 ) 證 設(shè) E 為開集, P 為 C E 的任意一個聚點,則在 P 點的任意鄰域內(nèi)都有集合 C E 的無數(shù)多個點,它們不屬于 E ,所以 P 點不可能是 E 的內(nèi)點,從而P 不屬于 E ,即 P ∈ C E ,既然 C E 包含了它所有的聚點,因此 C E 必為閉集 . 如果 E 為閉集,設(shè) P 是 C E 的任意一點, P ? E ,由于 E 為閉集,則 P 不是 E 的聚點,因此存在一個鄰域 U( P , ? ) ,其中不含 E 的點,即 U( P , ? ) ? C E ,這表明 C E 的任意一點都是 C E 的內(nèi)點,所以 C E 為開集 . 上頁 下頁 鈴 結(jié)束 返回 首頁 Mathematical Analysis 綿陽師范學(xué)院 x y o E 若 E 不包含邊界 , 則 E 為開集 . 若 E 包含邊界 , 則 E 不是開集 . 例 3 證明 : 非空平面點集 E 為開集的充要條件是 E 中每一點都不是 E 的邊界點 . 上頁 下頁 鈴 結(jié)束 返回 首頁 Mathematical Analysis 綿陽師范學(xué)院 設(shè) E 為開集 , AE?? , 由開集定義知 A 為 E 的內(nèi)點 . 故 A 不是 E 的邊界點 . 證明 “ 必要性” 若 E 中每一點都不是 E 的邊界點 .要證 E 為開集 . “ 充分性” AE?? , 由于 A 不是 E 的邊界點 . 故必存在 A 的一個鄰域 ? ?,UA ?, 在這個鄰域 ? ?,UA ?內(nèi) , 或者全是 E中的點 , 或者全都不是 E 中的點 , 兩者必居其一 . 由于 AE ? , 故后一情形不會發(fā)生 . 因此 ? ?,UA ?內(nèi)必全是 E 中的點 . 故 in tAE ? , 即 i n tEE ? , 所以 E 是開集 . 上頁 下頁 鈴 結(jié)束 返回 首頁 Mathematical Analysis 綿陽師范學(xué)院 、閉域、區(qū)域 連通性 : B A E 不連通 E 連通 A B 設(shè) E 是一非空平面點集 , ,A E B E? ? ? ?都可用完全含于 E 的折線將它們連接起來 , 則稱 E 為連通集 . 上頁 下頁 鈴 結(jié)束 返回 首頁 Mathematical Analysis 綿陽師范學(xué)院 E 是連通集 ,即 E是連成一片的 . 如圖 x + y = 0 x y o x y o 1 1 x2 + y2
點擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1