freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

人教版初中數(shù)學知識點總結-在線瀏覽

2024-09-15 02:06本頁面
  

【正文】 1)把一個點向上平移所得的點,它們的橫坐標相同,縱坐標加平移單位。(3)把一個點向右平移所得的點,它們的縱坐標相同,橫坐標加平移單位。實數(shù)1.算術平方根:正數(shù)a的正的平方根叫做a的算術平方根,記作“”。2.平方根:如果一個數(shù)x的平方等于a,那么這個數(shù)就叫做a的平方根(或二次方跟)。3.一個正數(shù)有兩個平方根,它們互為相反數(shù);0的平方根是0,;負數(shù)沒有平方根。5.一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零。7.無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。9.實數(shù)a的相反數(shù)是a,一個正實數(shù)的絕對值是它本身,一個負實數(shù)的絕對值是它的相反數(shù),0的絕對值是0 二元一次方程組1.二元一次方程:含有兩個未知數(shù),并且未知數(shù)的指數(shù)都是1的方程整式方程叫做二元一次。2.二元一次方程組:把兩個二元一次方程合在一起,就組成一個二元一次方程組。4.二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組的解。6.代入消元:將一個未知數(shù)用含有另一個未知數(shù)的式子表示出來,再代入另一個方程,實現(xiàn)消元,進而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。不等式與不等式組1.用不等號“<”“>”“≤ ”“≥”表示不相等關系的式子叫做不等式。3.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。5.一元一次不等式組:一般地,關于同一未知數(shù)的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。不等式的基本性質2:不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變。7.不等式的解法:一元一次不等式的解法的一般步驟: 去分母 …… 去括號 …… 移項 …… 合并同類項 …… 系數(shù)化為1 …….8.不等式解集在數(shù)軸上的表示方法:含≥或≤,用空心圓圈,含>或<用實心圓點。10.求不等式組解集的規(guī)律:不等式組的解集有四種情況:若ab:①當時,則不等式的公共解集為xa。③ 時,不等式的公共解集為xb。如果你還記不住,請靠數(shù)軸來幫助。2.抽樣調查:調查部分數(shù)據(jù),根據(jù)部分來估計總體的調查方式稱為抽樣調查。4.個體:總體中每一個考察對象叫做個體。6.樣本容量:樣本中個體的數(shù)目稱為樣本容量。8.總體平均數(shù):總體中所有個體的平均數(shù)叫做總體平均數(shù),在統(tǒng)計中,通常用樣本平均數(shù)估計總體平均數(shù)。各類統(tǒng)計圖的優(yōu)劣:條形統(tǒng)計圖:能清楚表示出每個項目的具體數(shù)目;折線統(tǒng)計圖:能清楚反映事物的變化情況;扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。11.頻率:每一小組的頻數(shù)與數(shù)據(jù)總數(shù)(樣本容量n)的比值叫做這一小組的頻率?;虬俜直?60176。14.畫直方圖的步驟:(1)計算最大值與最小值的差;(2)決定組距和組數(shù);(3)決定分點 (4)列頻數(shù)分布表;(5)畫頻數(shù)分布直方圖。2.三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。4.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。7.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。9.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫多邊形的外角。11.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。180176。14.公式與性質三角形的內角和:三角形的內角和為180176。性質2:三角形的一個外角大于任何一個和它不相鄰的內角。(2)n邊形共有條對角線。它是兩條直角邊相等的直角三角形。能夠完全重合的兩個三角形叫做全等三角形。如△ABC≌△DEF,讀作“三角形ABC全等于三角形DEF”。3.全等三角形的性質: 全等三角形的對應角相等、對應邊相等。5.直角三角形全等的判定:對于特殊的直角三角形,判定它們全等時,還有HL定理(斜邊、直角邊定理):有斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成“斜邊、直角邊”或“HL”)軸對稱1.對稱軸:把一個圖形沿某條直線對折,如果它與另一個圖形重合,就說這兩個圖形關于這條直線成軸對稱,該直線叫做對稱軸。3.軸對稱的性質: (1)關于某條直線成軸對稱的兩個圖形是全等形。(3)兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上。4.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)5.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。7.等邊三角形角的特點:三個內角相等,等于60176。的等腰三角形是等邊三角形 (3) 有兩個角是60176。9.角平分線的性質:角平分線上的點到角兩邊距離相等。10. 線段垂直平分線的性質:線段垂直平分線上的點到線段兩個端點的距離相等。11.在直角三角形中,如果一個銳角等于30176。12.三角形中的中位線:連接三角形兩邊中點的線段叫做三角形的中位線。 整式的乘除與分解因式1.同底數(shù)冪的乘法法則:(都是正整數(shù))同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。冪的乘方法則可以逆用:即 3.積的乘方法則:(是正整數(shù))。4.同底數(shù)冪的除法法則:(都是正整數(shù),且同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。即(a≠0)6.負整數(shù)指數(shù):任何不等于0的數(shù)的p次冪(p是正整數(shù)),等于這個數(shù)的p次冪的倒數(shù),即( a≠0,p是正整數(shù))。8.單項式乘以多項式,就是用單項式去乘多項式的每一項,再把所得的積相加,即(都是單項式)。10.平方差公式:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。即:(a+b)2=a2+b2+2ab12. 完全平方差公式:兩個數(shù)的差的平方,等于這兩個數(shù)的平方和,再減上這兩個的積的2倍。13.單項式的除法法則:單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。15.添括號法則:括號前面是+號,放進括號里面的每一項都不變號。三、因式分解1.因式分解的定義:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.2.因式分解的方法(1)提公因式法(1)找公因式的方法:①系數(shù)取各項系數(shù)的最大公約數(shù);②相同字母取指數(shù)最低的;(2)注意點:①提取公因式后各因式應該是最簡形式,即分解到“底”;②如果多項式的第一項的系數(shù)是負的,一般要提出“-”號,使括號內的第一項的系數(shù)是正的.(2)公式法①平方差公式: a2-b2= (a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2(3)十字相乘法:x2+(p+q)x+pq=(x+p)(x+q)分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式; (2)再看能否使用公式法;(3) 因式分解的最后結果必須是幾個整式的乘積,否則不是因式分解;(4)因式分解的結果必須進行到每個因式在有理數(shù)范圍內不能再分解為止。其中A叫做分式的分子,B叫做分式的分母。用式子表示為:A/B=A*C/B*C A/B=A247。C (A,B,C為整式,且C≠0) (2)分式的變號法則:分式的分子、分母與分式本身的符號,改變其中任何兩個,分式的值不變。 6.通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。7.最簡分式:一個分式的分子和分母沒有公因式時,這個分式稱為最簡分式。它的一般解法是:(1)去分母,方程兩邊都乘以最簡公分母(2)解所得的整式方程(3)驗根:將所得的根代入最簡公分母,若等于零,就是增根,原分式方程無解;若不等于零,就是原方程的根。(或是說,表示非負數(shù)的算術平方根的式子,叫做二次根式)。 (a≥0,b≥0)。反之, 4.最簡二次根式:必須同時滿足下列條件:⑴被開方數(shù)中不含開方開的盡的因數(shù)或因式; ⑵被開方數(shù)中不含分母; ⑶分母中不含根式。6.分母有理化:分母有理化就是通過分子和分母同乘以分母的有理化因式,將分母中的根號去掉的過程,混合運算中進行二次根式的除法運算,一般都是通過分母有理化而進行的。8.有理化因式:兩個含有二次根式的代數(shù)式相乘,如果它們的積不含有二次根式,則說這兩個代數(shù)式互為有理化因式。如:① 的有理化因式為 ,② 的有理化因式為 。即的有理化因式為 , 的有理化因式為 ,的有理化因式為 10.二次根式的加減,先把各個二次根式化成最簡二次根式,再將同類二次根式分別合并。 i)將每一個二次根式都化簡成最簡二次根式 iii)合并同類二次根式11. 二次根式的乘法兩個二次根式相乘,把被開方數(shù)相乘,根指數(shù)不變,即(≥0,≥0)。勾股定理1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。那么這個三角形是直角三角形。 我們把題設、結論正好相反的兩個命題叫做互逆命題。(例:勾股定理與勾股定理逆定理) 直角三角形的兩銳角互余;(2). 直角三角形中30176。直角三角形斜邊上的中線等于斜邊的一半。直角三角形的判定:(1).有一個角等于90176。平行四邊形用符號“□ABCD”表示,如平行四邊形ABCD記作“□ABCD”,讀作“平行四邊形ABCD”。 3.平行四邊形的判定:(1)兩組對邊分別平行的四邊形是平行四邊形;(2)兩組對邊分別相等的四邊形是平行四邊形;(3)一組對邊平行且相等的四邊形是平行四邊形;(4)對角線互相平分的四邊形是平行四邊形; (5)兩組對角分別相等的四邊形是平行四邊形。2.矩形的性質:(1)矩形的四個角都是直角; (2)矩形的對角線平分且相等。4.矩形的面積:S矩形=長寬=ab菱形1.菱形的定義 :有一組鄰邊相等的平行四邊形叫做菱形。 菱形的判定定理:(1)一組鄰邊相等的平行四邊形是菱形; (2)對角線互相垂直的平行四邊形是菱形; (3)四條邊相等的四邊形是菱形。2.正方形的性質:(1)具有平行四邊形、矩形、菱形的一切性質;(2)正方形的四個角都是直角,四條邊都相等;(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角;(4)正方形是軸對稱圖形,有4條對稱軸;(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。即有一組鄰邊相等的矩形是正方形先證它是菱形,再證有一個角是直角。4.正方形的面積:設正方形邊長為a,對角線長為b ,S正方形=梯形1.梯形的定義: 一組對邊平行,另一組對邊不平行的四邊形叫做梯形。4.等腰梯形的性質:(1)等腰梯形同一底邊上的兩個角相等;(2)等腰梯形的兩條對角線相等。(2)對角線相等的梯形是等腰梯形。7.梯形的中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半。 常量:在一個變化過程中只能取同一數(shù)值的量。判斷Y是否為X的函數(shù),只要看X取值確定的時候,Y是否有唯一確定的值與之對應3.函數(shù)自變量取值范圍:一般的,一個函數(shù)的自變量允許取值的范圍,叫函數(shù)自變量取值范圍。5.函數(shù)解析式用來表示函數(shù)關系的數(shù)學式子叫做函數(shù)解析式或函數(shù)關系式。(2)列表法:把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法。一般來說,對于一個函數(shù),如果把自變量與函數(shù)的每對對應值分別作為點的橫、縱坐標,那么坐標平面內由這些點組成的圖形,就是這個函數(shù)的圖象.8.由函數(shù)解析式畫其圖像的一般步驟(1)列表:列表給出自變量與函數(shù)的一些對應值(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。2.一次函數(shù)的圖像:是不經(jīng)過原點的一條直線。4. 用待定系數(shù)法確
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1