【摘要】一、羅爾(Rolle)定理二、拉格朗日(Lagrange)中值定理三、柯西(Cauchy)中值定理ab1?2?xyo)(xfy?C右圖,區(qū)間[a,b]上一條光滑曲線弧,且兩端點(diǎn)處的函數(shù)值相等,除區(qū)間端點(diǎn)外處處有不垂直于x軸的切線,在最高點(diǎn)和最低點(diǎn)處切線有何特點(diǎn)?觀察與思考:
2024-09-14 10:00
【摘要】中值定理洛必達(dá)法則函數(shù)的單調(diào)性與極值函數(shù)圖形的描繪導(dǎo)數(shù)在經(jīng)濟(jì)中的應(yīng)用結(jié)束第3章中值定理、導(dǎo)數(shù)應(yīng)用前頁結(jié)束后頁定理1設(shè)函數(shù)滿足下列條件)(xf)()(bfaf?(3)(1)在閉區(qū)間
2025-04-10 10:32
【摘要】微分中值定理證明中輔助函數(shù)的構(gòu)造1原函數(shù)法此法是將結(jié)論變形并向羅爾定理的結(jié)論靠攏,湊出適當(dāng)?shù)脑瘮?shù)作為輔助函數(shù),主要思想分為四點(diǎn):(1)將要證的結(jié)論中的換成;(2)通過恒等變形將結(jié)論化為易消除導(dǎo)數(shù)符號(hào)的形式;(3)用觀察法或積分法求出原函數(shù)(等式中不含導(dǎo)數(shù)符號(hào)),并取積分常數(shù)為零;(4)移項(xiàng)使等式一邊為零,另一邊即為所求輔助函數(shù).例1:證明柯西中值定理.分析:在柯西中值定理的結(jié)
2025-07-02 23:51
【摘要】中值定理一向是經(jīng)濟(jì)類數(shù)學(xué)考試的重點(diǎn)(當(dāng)然理工類也常會(huì)考到),咪咪結(jié)合老陳的書和一些自己的想法做了以下這個(gè)總結(jié),希望能對各位研友有所幫助。1、所證式僅與ξ相關(guān)①觀察法與湊方法②原函數(shù)法③一階線性齊次方程解法的變形法2、所證式中出現(xiàn)兩端點(diǎn)①湊拉格朗日②柯西定理③k值法④泰勒公式法老陳常說的一句話,管它是什么,先泰勒展開再說。當(dāng)定理感覺
2025-05-22 04:49
【摘要】富蘭克林Ifyouwouldnotbefotten,assoonasyouaredeadorrotten,eitherwritethingsworthreading,ordothingsworthwriting.——Benjamin.Franklin如果你不想在死后被人
2024-09-26 01:31
【摘要】樂山師范學(xué)院畢業(yè)論文(設(shè)計(jì))本科生畢業(yè)論文(設(shè)計(jì))系(院)數(shù)學(xué)與信息科學(xué)學(xué)院專業(yè)數(shù)學(xué)與應(yīng)用數(shù)學(xué)論文題目微分中值定理及其應(yīng)用學(xué)生姓名賈孫鵬指導(dǎo)教師黃寬娜(副教授)班級(jí)11級(jí)數(shù)應(yīng)1班
2024-08-08 18:33
【摘要】微積分(一)calculus§微分中值定理§洛必達(dá)法則§用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、和最值§函數(shù)曲線的凹向及拐點(diǎn)§§第四章中值定理及導(dǎo)數(shù)的應(yīng)用微積分(一)calculus§微分中值定理一、引言二、微分中值定
2025-03-09 05:32
【摘要】高等數(shù)學(xué)工科數(shù)學(xué)分析、常微分方程基礎(chǔ)、立體解析幾何第二章一元微分學(xué)微積分學(xué)的產(chǎn)生是科學(xué)史上最重大的成就之一。其實(shí)早在公元前五世紀(jì),從安蒂豐建立所謂的窮竭法,經(jīng)過歐多克索斯(公元前四世紀(jì)),到阿基米德(公元前三世紀(jì))的探索和發(fā)展,積分學(xué)就曾以另外一種面貌,局部的出現(xiàn)過(它比導(dǎo)數(shù)思想的出現(xiàn)早得多,當(dāng)
2024-12-03 06:30
【摘要】第五講中值定理的證明技巧一、考試要求1、理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最大值、最小值定理,有界性定理,介值定理),并會(huì)應(yīng)用這些性質(zhì)。2、理解并會(huì)用羅爾定理、拉格朗日中值定理、泰勒定理,了解并會(huì)用柯西中值定理。掌握這四個(gè)定理的簡單應(yīng)用(經(jīng)濟(jì))。3、了解定積分中值定理。二、內(nèi)容提要1、介值定理(根的存在性定理)(1)介值定理在閉區(qū)間上連續(xù)
2025-08-06 00:08
【摘要】目錄上頁下頁返回結(jié)束二、導(dǎo)數(shù)應(yīng)用習(xí)題課一、微分中值定理及其應(yīng)用中值定理及導(dǎo)數(shù)的應(yīng)用第三章目錄上頁下頁返回結(jié)束造技巧:注:常見的一些函數(shù)構(gòu)????)()(),(1ffba?????使)證(xxfxF)()(??0)()(),(2????
2024-09-05 00:45
【摘要】引言通過對數(shù)學(xué)分析的學(xué)習(xí)我們知道,微分學(xué)在數(shù)學(xué)分析中具有舉足輕重的地位,它是組成數(shù)學(xué)分析的不可缺失的部分。對于整塊微分學(xué)的學(xué)習(xí),我們可以知道中值定理在它的所有定理里面是最基本的定理,也是構(gòu)成它理論基礎(chǔ)知識(shí)的一塊非常重要的內(nèi)容。由此可知,對于深入的了解微分中值定理,可以讓我們更好的學(xué)好數(shù)學(xué)分析。通過對微分中值定理的研究,我們可以得到它不僅揭示了函數(shù)整體與局部的關(guān)系,而且也是
2025-08-11 22:55
【摘要】《高等數(shù)學(xué)》Ⅱ—Ⅰ課程教案第三章微分中值定理與導(dǎo)數(shù)的應(yīng)用本章內(nèi)容是上一章的延續(xù),主要是利用導(dǎo)數(shù)與微分這一方法來分析和研究函數(shù)的性質(zhì)及其圖形和各種形態(tài),這一切的理論基礎(chǔ)即為在微分學(xué)中占有重要地位的幾個(gè)微分中值定理。在分析、論證過程中,中值定理有著廣泛的應(yīng)用。一、教學(xué)目標(biāo)與基本要求(一)知識(shí)、拉格朗日中值定理、柯西中值定理的條件和結(jié)論;;,sin(x),cos(
2025-08-11 23:00
【摘要】第三單元微分中值定理與導(dǎo)數(shù)應(yīng)用一、填空題1、__________。2、函數(shù)在區(qū)間______________單調(diào)增。3、函數(shù)的極大值是____________。4、曲線在區(qū)間__________是凸的。5、函數(shù)在處的階泰勒多項(xiàng)式是_________。6、曲線的拐點(diǎn)坐標(biāo)是_________。7、若在含的(其中)內(nèi)恒有二階負(fù)的導(dǎo)數(shù),且_______,則是在上的
2024-09-27 11:37
【摘要】1各專業(yè)完整優(yōu)秀畢業(yè)論文設(shè)計(jì)圖紙本科畢業(yè)論文設(shè)計(jì)題目:拉格朗日中值定理的應(yīng)用學(xué)生姓名:學(xué)號(hào):2020
2024-11-04 21:08
【摘要】1、定滑輪:位置(軸)固定不動(dòng)的滑輪實(shí)質(zhì):等臂杠桿特點(diǎn):不能省力,但可以改變力的方向,s=hl1=l2F=G(不計(jì)摩擦)F1L1L2O2、動(dòng)滑輪:位置(軸)隨重物移動(dòng)的滑輪特點(diǎn):省一半力,但不能改變力的方向,S=2h實(shí)質(zhì):動(dòng)力臂為阻力臂的兩倍的杠桿l1=2l2F=1/2(G
2024-09-26 01:44