【摘要】教學(xué)案例§1.4含絕對值的不等式解法學(xué)校:織金二中組別:數(shù)學(xué)組姓名:田茂松教學(xué)目標(biāo):(一)知識目標(biāo)(認(rèn)知目標(biāo))1、理解并會求的解集;2、掌握的解法.(二)能力目標(biāo)1、通過不等式的求解,加強(qiáng)學(xué)生的運(yùn)算能力;2、培養(yǎng)學(xué)生數(shù)形結(jié)合、整體代換、等價轉(zhuǎn)化等的思想.(三)情感目標(biāo)1、感悟形與數(shù)不同的數(shù)學(xué)形態(tài)間的和諧同一美;2、培
2025-06-04 00:12
【摘要】含絕對值的不等式解法(一)復(fù)習(xí)思考1、復(fù)習(xí)初中學(xué)過的不等式的三條基本性質(zhì).(1)、如果,那么(2)、如果,那么(3)、注意:性質(zhì)(3)是不等式兩邊都乘以同一個負(fù)數(shù),不等號的方向要變.2、復(fù)習(xí)絕對值的定義及其幾何意義.幾何意義:x在數(shù)軸上所對應(yīng)點(diǎn)到原點(diǎn)的距離(二).探究新知,在數(shù)軸上在數(shù)軸上應(yīng)該怎樣表示?解絕對值不等式,由絕對值的意
2025-06-04 00:47
【摘要】絕對值三角不等式:如:|-3|或|3|表示數(shù)-3,3所對應(yīng)的點(diǎn)A或點(diǎn)B到坐標(biāo)原點(diǎn)的距離.探究新知3?x即實(shí)數(shù)x對應(yīng)的點(diǎn)到坐標(biāo)原點(diǎn)的距離小于3.探究新知絕對值的幾何意義:同理,與原點(diǎn)距離大于3的點(diǎn)對應(yīng)的實(shí)數(shù)可表示為:3?x探究新知
2025-01-15 01:34
【摘要】絕對值三角不等式:如:|-3|或|3|表示數(shù)-3,3所對應(yīng)的點(diǎn)A或點(diǎn)B到坐標(biāo)原點(diǎn)的距離.探究新知3?x即實(shí)數(shù)x對應(yīng)的點(diǎn)到坐標(biāo)原點(diǎn)的距離小于3.探究新知絕對值的幾何意義:同理,與原點(diǎn)距離大于3的點(diǎn)對應(yīng)的實(shí)數(shù)可表示為:3?x探究新知設(shè)a,b是
2025-01-13 08:31
【摘要】第三講絕對值不等式的解法【基本知識】(1)含絕對值的不等式|x|<a與|x|>a的解集不等式a>0a=0a<0|x|<a{x|-a<x<a}|x|>a{x|x>a或x<-a}{x|x∈R且x≠0}R注:|x|以及|x-a|±|x-b|表示的幾何意義(|x|表示數(shù)軸上的點(diǎn)x到原點(diǎn)的距離;|x-a|±|x-b
2024-09-28 16:51
【摘要】精品資源含絕對值不等式解法例說解含絕對值符號的不等式的基本思想是去掉絕對值符號,使不等式變?yōu)椴缓^對值符號的一般不等式,而后,其解法就與一般不等式相同.因此,掌握去掉絕對值符號的方法和途徑是解題關(guān)鍵.一、化歸定義法例1關(guān)于x的不等式|kx-1|≤5的解集為{x|-3≤x≤2},求k的值.思路點(diǎn)撥:按絕對值定義直接去掉絕對值符號后,由于k的取值不確定,要以k的不同取值
2024-07-30 08:43
【摘要】【解題回顧】本題解答過程中,通過不斷實(shí)施各種數(shù)學(xué)語言間的等價轉(zhuǎn)換脫去集合符號和抽象函數(shù)的“外衣”,找出本質(zhì)的數(shù)量關(guān)系是關(guān)鍵之所在.返回f(x)=x2+px+q,且集合A={x|x=f(x)},B={x|f[f(x)]=x}(1)求證AB;(2)如果A={-1,3},求B?要點(diǎn)
2025-01-09 14:29
【摘要】精品資源含絕對值不等式解法要點(diǎn)歸納解含絕對值符號的不等式的基本思想是去掉絕對值符號,使不等式變?yōu)椴缓^對值符號的一般不等式,而后,其解法就與一般不等式相同.因此,掌握去掉絕對值符號的方法和途徑是解題關(guān)鍵.一、含有絕對值不等式的幾種去掉絕對值符號的常用方法去掉絕對值符號的方法有很多,其中常用的方法有:1.定義法去掉絕對值符號根據(jù)實(shí)數(shù)絕對的意義,即|x|=,有:|
2024-08-05 21:31
【摘要】第一講不等式解法一、含絕對值的不等式的解法不等式解集或把看成一個整體,化成,型不等式來求解[例題精講]例1.解關(guān)于x的不等式|x-2|0)型?!?4x-24,不等號各端加2,得-2x6?!嗖坏仁浇饧莧x|-2
2024-07-30 08:38
【摘要】含絕對值的不等式的解法一、基本解法與思想解含絕對值的不等式的基本思想是等價轉(zhuǎn)化,即采用正確的方法去掉絕對值符號轉(zhuǎn)化為不含絕對值的不等式來解,常用的方法有公式法、定義法、平方法。(一)、公式法:即利用與的解集求解。主要知識: 1、絕對值的幾何意義:是指數(shù)軸上點(diǎn)到原點(diǎn)的距離;是指數(shù)軸上,兩點(diǎn)間的距離.。2、與型的不等式的解法。當(dāng)時,不等式的解集是不等式的解集是
2024-07-30 08:29
【摘要】主講教師王玲華含絕對值不等式的解法內(nèi)容及要求:掌握根據(jù)絕對值的定義及幾何意義解簡單的含絕對值的不等式的方法,并會用集合表示不等式的解.例題:例1.解關(guān)于x的不等式:①|(zhì)x|0)②|x|a(a0)
2025-07-17 23:20
【摘要】含絕對值的不等式解法·典型例題能力素質(zhì)例1不等式|8-3x|>0的解集是[]ABRC{x|x}D{83}...≠.?83分析∵->,∴-≠,即≠.|83x|083x0x83答選C.例2
2025-01-14 06:54
【摘要】含絕對值的不等式含絕對值的不等式一、復(fù)習(xí)舊知,以舊悟新:一、復(fù)習(xí)舊知,以舊悟新:絕對值定義及基本性質(zhì):一、復(fù)習(xí)舊知,以舊悟新:絕對值定義及基本性質(zhì):1.定義:2.基本性質(zhì):2.基本性質(zhì):2.基本性質(zhì):二、提出問題,推導(dǎo)定理:二、提出問題,推導(dǎo)定理:二、提出問題,推導(dǎo)定理:
2024-12-21 18:44
【摘要】【課題】【教學(xué)目標(biāo)】知識目標(biāo):(1)理解含絕對值不等式或的解法;(2)了解或的解法.能力目標(biāo):培養(yǎng)學(xué)生觀察、分析、歸納、概括的能力,以及邏輯推理能力,考察學(xué)生思維的積極性和全面性,領(lǐng)悟分類討論、化歸和數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)數(shù)學(xué)理解力,化歸能力及運(yùn)算能力,初步學(xué)會用數(shù)學(xué)思想指導(dǎo)數(shù)學(xué)思維。情感目標(biāo):激發(fā)學(xué)生學(xué)習(xí)興趣,鼓勵學(xué)生大膽探索,向?qū)W生滲透“具體-抽象-具
2025-06-04 00:11
【摘要】含參數(shù)的絕對值不等式一、教學(xué)目標(biāo)知識與技能:?了解處理絕對值不等式恒成立問題的基本解法,體會不同解決方法優(yōu)缺點(diǎn),能根據(jù)具體問題采取適當(dāng)?shù)慕鉀Q方法。過程與方法:?通過把一個較難的題目改寫成相對簡單的問題,從而總結(jié)出這類題的處理方案,從而達(dá)到解決這類題目的方法和手段。情感態(tài)度與價值觀:?培養(yǎng)學(xué)生觀察,類比,化歸轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想方法,同時提高處理數(shù)
2024-08-04 02:23