【摘要】及通項(xiàng)公式?學(xué)習(xí)目標(biāo):,理解等差數(shù)列的概念..,發(fā)現(xiàn)數(shù)列的等差關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題..復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,1a第2項(xiàng)用
2025-01-15 18:09
2025-01-12 03:51
【摘要】復(fù)習(xí)回顧通項(xiàng)公式:等差數(shù)列中:前n項(xiàng)和公式:例題講解例1.求集合中元素的個(gè)數(shù),并求這些元素的和。解:代公式可得或由,即或答:集合M中共有14個(gè)元素,它們的和等于7
2025-01-12 05:34
【摘要】=(1100)(299)(5051)??????原式那么S=1+2+3+…+997+998+999=?倒序相加法求等差數(shù)列前n項(xiàng)和:)?梯上底下底高(+S=2解:3)1313??11371(a+a2aS===52.2
2025-07-15 17:18
【摘要】等差數(shù)列前n項(xiàng)和公式復(fù)習(xí)回顧(1)等差數(shù)列的通項(xiàng)公式:已知首項(xiàng)a1和公差d,則有:an=a1+(n-1)d已知第m項(xiàng)am和公差d,則有:an=am+(n-m)d,d=(an-am)/(n-m)
2024-09-25 20:34
【摘要】等差數(shù)列的前n項(xiàng)和公式一新課引入一個(gè)堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個(gè)V形架上共放著多少支鉛筆?播放課件一個(gè)堆放小球的V形架問(wèn)題就是“”?1004321???????這是小學(xué)時(shí)就知道的一個(gè)故事,
2024-11-10 17:22
【摘要】若數(shù)列的前n項(xiàng)和記為Sn,即Sn=a1+a2+a3+……+an-1+anSn-1∴當(dāng)n≥2時(shí),有an=Sn-Sn-110歲的高斯(德國(guó))的算法:n首項(xiàng)與末項(xiàng)的和:1+100=101n第2項(xiàng)與倒數(shù)第2項(xiàng)的和:2+99=101n第3項(xiàng)與倒數(shù)第3項(xiàng)的和:3+98=101n………………………………………n
2024-09-25 20:31
【摘要】????????100321:引例一德國(guó)數(shù)學(xué)家高斯(數(shù)學(xué)王子)1+100=1012+99=1013+98=101??????50+51=1012)1001(100100??S5050?,,:如何求鋼管的總數(shù)多少是從上到下的鋼管數(shù)分別如圖引例二思考:如果在這堆鋼管的旁邊堆放著同樣一堆
2024-09-26 01:26
【摘要】等差數(shù)列的概念與通項(xiàng)公式從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都是同一個(gè)常數(shù).2)某劇場(chǎng)前10排的座位數(shù)分別是:38,40,42,44,46,48,50,52,54,56觀察這些數(shù)列有什么共同特點(diǎn)?3)3,0,-3,-6,-9,-12,……4)2,4,6,8,105)1,1,1,1,1,
2024-12-03 20:25
【摘要】等差數(shù)列求和公式一、鞏固與預(yù)習(xí)1.{an}為等差數(shù)列???,更一般的,,d=.2.a、b、
2025-01-27 16:22
【摘要】等差數(shù)列的通項(xiàng)公式及應(yīng)用1.已知等差數(shù)列的通項(xiàng)公式為an=-3n+a,a為常數(shù),則公差d=[] 2.已知等差數(shù)列{an}中,a8比a3小10,則公差d的值為[] A.2B.-2C.5D.-53.已知數(shù)列a,-15,b,c,45是等差數(shù)列,則a+b+c的值是[] A.-5B.0C.5D.104.已知等差數(shù)列{an}中,a1+a2
2025-05-12 06:56
【摘要】????????100321:引例一德國(guó)數(shù)學(xué)家高斯(數(shù)學(xué)王子)1+100=1012+99=1013+98=101??????50+51=1012)1001(100100??S5050?,,:如何求鋼管的總數(shù)多少是從上到下的鋼管數(shù)分別如圖引例二思考:如果在這堆鋼管的旁邊堆放著同樣一堆鋼管,如
2024-09-26 00:55
【摘要】等差數(shù)列求和公式:}{項(xiàng)和為的前數(shù)列nannsnnaaaas?????...321???1nnssna13211???????nnaaaas...10歲的高斯(德國(guó))的算法:?首項(xiàng)與末項(xiàng)的和:1+100=101?第2項(xiàng)與倒數(shù)第2項(xiàng)的和:2+99=101?第3項(xiàng)與倒數(shù)第3項(xiàng)的和:3+98=101?
2024-09-26 01:37
【摘要】復(fù)習(xí)回顧an=a1+(n-1)dan-an-1=d(n∈N*且n≥2)1+2+3+···+100=?高斯,(1777—1855)德國(guó)著名數(shù)學(xué)家。S=100+99+98+3…+2+1問(wèn)題1S=1+2+3+…+98+99+
【摘要】江蘇睢寧高級(jí)中學(xué)朱虎問(wèn)題情景1:24屆到第29屆奧運(yùn)會(huì)舉行的年份依次為:1988,1992,1996,2020,2020,2020.:通話時(shí)間不超過(guò)3分鐘,收話費(fèi),以后每分鐘收話費(fèi),那么通話費(fèi)從小到大的次序依次為:,+,+×2,+×3,
2025-01-12 12:24