freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

基于pca方法的人臉識(shí)別系統(tǒng)建模與實(shí)現(xiàn)畢業(yè)論文-在線瀏覽

2025-08-06 18:39本頁(yè)面
  

【正文】 基下),因?yàn)橐话愕挠^測(cè)者都是習(xí)慣于取攝像機(jī)的屏幕坐標(biāo),即向上和向右的方向作為觀測(cè)的基準(zhǔn)。在線形代數(shù)中,這組標(biāo)準(zhǔn)正交基表示為行列向量線形無(wú)關(guān)的單位矩陣。這是一個(gè)非常強(qiáng)的假設(shè)條件。這樣一來(lái)數(shù)據(jù)就可以被表示為各種基的線性組合。是一個(gè)的矩陣,它的每一個(gè)列向量都表示一個(gè)時(shí)間采樣點(diǎn)上的數(shù)據(jù),在上面的例子中。是他們之間一個(gè)的線性轉(zhuǎn)換方陣。表示的列向量(或者)。公式(3-1)表示不同基之間的轉(zhuǎn)換,在線性代數(shù)中,它有如下的含義:(1)是從到的轉(zhuǎn)換矩陣,幾何上來(lái)說(shuō),對(duì)進(jìn)行旋轉(zhuǎn)和拉伸得到;(2)的行向量T是一組新的基,而是原數(shù)據(jù)在這組新的基表示下得到的重新表示。它對(duì)原數(shù)據(jù)進(jìn)行重新表示。這是由于變換后的數(shù)據(jù)更能體現(xiàn)信號(hào)成分的原因。問(wèn)題轉(zhuǎn)化為如下的形式:(1)怎樣才能最好的表示原數(shù)據(jù)?(2)的基怎樣選擇才是最好的?解決問(wèn)題的關(guān)鍵是如何體現(xiàn)數(shù)據(jù)的特征。在線性系統(tǒng)中,所謂的“混亂數(shù)據(jù)”通常包含以下三種成分:噪聲、旋轉(zhuǎn)(線性失真或扭曲)以及冗余。噪聲對(duì)數(shù)據(jù)的影響是巨大的,如果不能對(duì)噪聲進(jìn)行區(qū)分,就不可能抽取數(shù)據(jù)中有用的信息。那么怎樣區(qū)分混雜數(shù)據(jù)中哪些是信號(hào),哪些是噪音呢?這里假設(shè)真正的信號(hào)總是變化較大,而噪聲(由空氣、摩擦、攝像機(jī)的誤差以及非理想化的彈簧等引入的)的變化總是較小的。而變化的大小由方差來(lái)描述(這里的定義是個(gè)一致估計(jì)量)。顯然方差較大的方向,也就是較“寬”(“胖”)的分布,表示采樣點(diǎn)的主要分布趨勢(shì),是主信號(hào)或主要分量(如圖3-4(a)中的長(zhǎng)實(shí)線方向);而方差較小的分布則被認(rèn)為是噪聲或次要分量(如圖3-5(a)中的短實(shí)線方向)。圖3-5(a)中只是攝像機(jī)A采集數(shù)據(jù)時(shí)的所參考的標(biāo)準(zhǔn)正交基,而采集數(shù)據(jù)的真正分布由于攝像機(jī)的擺放、攝像機(jī)的線性扭曲與拍攝時(shí)的抖動(dòng)等引起了旋轉(zhuǎn)。在二維空間中,變換矩陣只有兩個(gè)二維向量。在新的正交基P(如圖3-5(a)的長(zhǎng)短黑實(shí)線,假設(shè)為)下,則認(rèn)為采樣點(diǎn)云在長(zhǎng)線方向上分布的方差是,而在短線方向上分布的方差是,此時(shí)也達(dá)到最大。那么,最大限度的揭示原數(shù)據(jù)的結(jié)構(gòu)和關(guān)系,找出某條潛在的最優(yōu)的軸等價(jià)于尋找一個(gè)正交基P,使得信噪比盡可能最大。那么怎樣尋找這樣一組方向呢?直接的想法是對(duì)基向量進(jìn)行旋轉(zhuǎn)。對(duì)應(yīng)于最大值的一組基,就是最優(yōu)的“主元”方向。有時(shí)在實(shí)驗(yàn)中引入了一些不必要的變量。下面對(duì)這樣的冗余情況進(jìn)行分析和分類。(a)圖所示的情況是低冗余的,從統(tǒng)計(jì)學(xué)上說(shuō),這兩個(gè)觀測(cè)變量是相互獨(dú)立的,它們之間的信息沒(méi)有冗余。一般來(lái)說(shuō),這種情況發(fā)生可能是因?yàn)閿z像機(jī)A和攝像機(jī)B放置的位置太近或是數(shù)據(jù)被重復(fù)記錄了,也可能是由于實(shí)驗(yàn)設(shè)計(jì)的不合理所造成的。這也就是PCA中“降維”思想的本源。同理對(duì)三維變量,若記錄的數(shù)據(jù)均勻分布在一個(gè)球體內(nèi),則也認(rèn)為三個(gè)變量是完全獨(dú)立的,若分布在一個(gè)曲面上,則有一個(gè)變量是冗余的(),若分布在一根直線上,則有兩個(gè)變量是多余的。在統(tǒng)計(jì)學(xué)中,由協(xié)方差的性質(zhì)可以得到:(1),且當(dāng)觀測(cè)變量,不相關(guān)時(shí)。協(xié)方差的向量表示:?!             。?-7)則互相關(guān)矩陣如下:(請(qǐng)注意,互相關(guān)與協(xié)方差之間只相差一個(gè)常數(shù),兩者具有完全相同的物理意義:,協(xié)方差矩陣是除去均值的互相關(guān)矩陣,正因?yàn)槿绱?,所以下文將兩者的名字不加與區(qū)別)          ?。?-8)容易發(fā)現(xiàn)協(xié)方差矩陣性質(zhì)如下:(1)是一個(gè)的平方對(duì)稱矩陣。非對(duì)角線上的元素是對(duì)應(yīng)的觀測(cè)變量之間的協(xié)方差,反映了觀測(cè)變量間的冗余程度。一般情況下,初始數(shù)據(jù)的協(xié)方差矩陣總是不太好的,表現(xiàn)為信噪比不高(由于實(shí)驗(yàn)中引入了噪聲)且變量間相關(guān)度大(實(shí)驗(yàn)者對(duì)實(shí)際模型的未知性)。因?yàn)閰f(xié)方差矩陣的每一項(xiàng)都是正值,最小值為0,所以優(yōu)化的目標(biāo)矩陣的非對(duì)角元素應(yīng)該都是0,對(duì)應(yīng)于冗余最小,故目標(biāo)矩陣應(yīng)該是個(gè)對(duì)角陣,即只有對(duì)角線上的元素可能是非零值。對(duì)協(xié)方差矩陣進(jìn)行對(duì)角化的方法有很多。(2)在與垂直的向量空間中進(jìn)行遍歷,找出次大的方差對(duì)應(yīng)的向量,記作。它們生成的順序也就是“主元”的排序。在這中間,牽涉到兩個(gè)重要的特性:(1)轉(zhuǎn)換基是一組標(biāo)準(zhǔn)正交基。(2)在PCA的過(guò)程中,可以同時(shí)得到新的基向量所對(duì)應(yīng)的“主元排序”,利用這個(gè)重要性排序可以方便的對(duì)數(shù)據(jù)進(jìn)行取舍、簡(jiǎn)化處理或壓縮。對(duì)于學(xué)習(xí)和掌握PCA來(lái)說(shuō),理解這些內(nèi)容是非常重要的,同時(shí)也有利于理解基于改進(jìn)這些限制條件的PCA的一些擴(kuò)展算法。如同彈簧運(yùn)動(dòng)的例子,PCA的內(nèi)部模型是連續(xù)的線性空間?,F(xiàn)在比較流行的kernelPCA的一類方法就是使用非線性的權(quán)值對(duì)原有PCA技術(shù)的拓展。使用均值和方差二階統(tǒng)計(jì)量對(duì)概率分布模型進(jìn)行充分的描述只限于指數(shù)型概率分布模型(例如高斯分布),也就是說(shuō),如果我們考察的數(shù)據(jù)的概率分布并不滿足指數(shù)型概率分布,那么PCA將會(huì)失效。事實(shí)上,去除冗余最基礎(chǔ)的方程是:,其中代表概率分布的密度函數(shù)。不過(guò),所幸的是,根據(jù)中央極限定理(大量起微小作用的任意分布的獨(dú)立隨機(jī)變量之和的分布近似高斯分布),現(xiàn)實(shí)生活中所遇到的大部分采樣數(shù)據(jù)的概率分布都是遵從高斯分布的。(3)大方差向量具有較大重要性。(4)主元正交?!CA求解(特征根分解)在線形代數(shù)中,PCA問(wèn)題可以描述成以下形式:尋找一組正交基組成的矩陣,有,使得是對(duì)角陣。對(duì)進(jìn)行數(shù)學(xué)推導(dǎo):    ?。?-10)定義,則是一個(gè)維的對(duì)稱方陣。對(duì)稱陣有個(gè)特征向量,其中是矩陣的秩。此時(shí)分解出的特征向量不能覆蓋整個(gè)維空間,只需要在保證基的正交性的前提下,在剩余的空間中任意取得維正交向量填充的空格即可。因?yàn)榇藭r(shí)對(duì)應(yīng)于這些特征向量的特征值,也就是方差值為零。(2)矩陣對(duì)角線上第i個(gè)元素是數(shù)據(jù)在方向的方差。為觀測(cè)變量個(gè)數(shù),為采樣點(diǎn)個(gè)數(shù)。(3)對(duì)進(jìn)行特征分解,求取特征向量以及所對(duì)應(yīng)的特征根并按其絕對(duì)值大到小排序。在這個(gè)由新的正交基張成的空間坐標(biāo)系中,最大特征根所對(duì)應(yīng)的特征向量(即的第一列)將朝向小球真實(shí)運(yùn)動(dòng)的方向(在這個(gè)方向上數(shù)據(jù)有最大的方差和SNR,去除了實(shí)驗(yàn)噪聲和系統(tǒng)線性扭曲的影響)。這里要特別介紹的是它在計(jì)算機(jī)視覺(jué)領(lǐng)域的應(yīng)用,包括如何對(duì)圖像進(jìn)行處理以及在人臉識(shí)別方面的特別作用。如果是一幅大小的圖像,它的數(shù)據(jù)將被表達(dá)為一個(gè)維的向量:,在這里圖像的結(jié)構(gòu)將被打亂,每一個(gè)像素點(diǎn)被看作是一維,最直接的方法就是將圖像的像素一行一行的從頭到尾相接成一個(gè)一維向量。將它們排成一個(gè)矩陣:  ?。?-12)然后對(duì)它們進(jìn)行PCA處理,找出主元。對(duì)這樣的一組人臉圖像進(jìn)行處理,提取其中最重要的主元,即可大致描述人臉的結(jié)構(gòu)信息,稱作“特征臉”(EigenFace)。近些年來(lái),基于對(duì)一般PCA方法的改進(jìn),結(jié)合ICA、kernelPCA等方法,在主元分析中加入關(guān)于人臉圖像的先驗(yàn)知識(shí),則能得到更好的效果。這是視覺(jué)領(lǐng)域內(nèi)圖像處理的經(jīng)典算法之一。然后根據(jù)主元的排序去除其中次要的分量,然后變換回原空間,則圖像序列因?yàn)榫S數(shù)降低得到很大的壓縮。但是這種有損的壓縮方法同時(shí)又保持了其中最“重要”的信息,是一種非常重要且有效的算法。所謂訓(xùn)練就是從先驗(yàn)的大量實(shí)驗(yàn)數(shù)據(jù)中統(tǒng)計(jì)抽取出某類模式的特征,然后將該特征標(biāo)注為該模式類,測(cè)試就是在實(shí)踐中,已知一個(gè)樣本,用相同或不同于訓(xùn)練步的方法抽取它的特征,再將該特征與模式類進(jìn)行相似度度量并進(jìn)行識(shí)別。所謂人臉全局特征是指所提取的特征與整幅人臉圖像甚至與整個(gè)訓(xùn)練樣本集
點(diǎn)擊復(fù)制文檔內(nèi)容
規(guī)章制度相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1