【正文】
。(3) 引發(fā)劑的配置:稱取過硫酸鉀 ,放置于干凈的50ml的燒杯中用移液管準確加入去離子水,使引發(fā)劑濃度達到10mgK2S2O8/1mlH2O,使之溶解備用。開始攪拌并且水浴加熱,待到乳化劑溶解之后,瓶內(nèi)溫度達到80℃左右時,用移液管移取10K2S2O8溶液及10ml的苯乙烯單體,迅速升溫到88℃~90℃,注意觀察反應(yīng)過程中溶液的變化。(5)將乳液導(dǎo)入150ml的燒杯中,加入1g的AlCl3,迅速攪拌使乳液凝聚,用布氏漏斗吸濾,%AgNO3檢查無Cl為止。(6) 稱重,用烏氏粘度計測其分子量和用轉(zhuǎn)矩流變儀測其流變性能。(8)其他條件不變,、重復(fù)上述步驟。(10)使乳化劑的量分別為03g、乳化劑(十二烷基硫酸鈉) 重復(fù)上述實驗步驟。 實驗方案的設(shè)計表23 實驗計劃方案 組號項目乳化劑(g)單體(ml)引發(fā)劑(ml)溫 度(℃)時 間(h)1101090215109031010902,041010905101080610107572010908101090910109010101085111010901210109013101090備注:(11號的乳化劑為十二烷基硫酸鈉,其余的乳化劑都為十二烷基磺酸鈉。當加入不等量的乳化劑(十二烷基磺酸鈉)的實驗所得到的質(zhì)量 如下表24。 從圖21可以看出。當乳化劑量增加時,形成膠束的數(shù)目就增多,生成的乳膠粒也多,反應(yīng)速度增加,所以產(chǎn)量就會有所增加,所以產(chǎn)率就會增大。當改乳化劑組成時,產(chǎn)率基本不變。圖22 聚合溫度與產(chǎn)率圖 通過圖22可以看出:當反應(yīng)溫度為80攝氏度時,所得到的產(chǎn)率最高。到80攝氏度時,產(chǎn)率達到最高值。到80攝氏度,聚合溫度繼續(xù)升高時,膠束就會慢慢不穩(wěn)定,甚至被破壞,這樣單體聚合反應(yīng)場所就會減少,從而反應(yīng)速率降低,從而致使轉(zhuǎn)化率降低。 單體用量產(chǎn)率的影響 其他聚合條件不變,將單體量分別為10ml、15ml、20ml、進行反應(yīng)。 聚合溫度對聚合物分子量的影響通過實驗得知聚合溫度對分子量的影響與對產(chǎn)率的影響差不多。當溫度提升時,單體分子運動加劇,反應(yīng)速率就會增加,分子量增大。圖24 溫度與分子量圖 乳化劑用量對聚合物分子量的影響 通過實驗結(jié)果得知,乳化劑用量對聚苯乙烯分子量影響與其對產(chǎn)率影響相似。2. 5. 6 聚合時間對聚合物分子量的影響圖26 聚合時間與分子量,聚苯乙烯的分子量隨聚合時間的增加而增大,聚合物的分子量隨時間的增長而漸漸地減小。但增長連增到一定程度后,增長鏈隨著時間的增加而開始進行裂解,所以分子量就會減小。通過多次實驗并分析得出以下結(jié)論:(1)當乳化劑為單一變量時,在乳化劑用量與單體量比為6%左右之前,產(chǎn)率隨乳化劑用量增加而增大;當乳化劑用量與單體量比到6%左右時,產(chǎn)率達到最高值;當乳化劑用量與單體量比大于6%之后,產(chǎn)率隨乳化劑量增加而減小。(2)當溫度為單一變量時,溫度為85攝氏度時產(chǎn)率最高,在85攝氏度之前,產(chǎn)率隨溫度的升高而增大,到85攝氏度之后,溫度繼續(xù)升高,產(chǎn)率隨溫度的升高而降低。(3)當時間為單一變量,產(chǎn)率隨時間的增加而增大了,產(chǎn)率達到最大值。最后得出本實驗的最佳工藝:單體量為15ml,聚合溫度為85攝氏度;;。在此,我真誠感謝我的指導(dǎo)老師:梁博老師,是她精心的指導(dǎo)和默默地支持,讓我從多次失敗和困難中走出。除此之外,我還要感謝我的所有教給我知識的老師,是他們教給我了各種知識我才能完成了畢業(yè)設(shè)計,感謝我學(xué)院的全體老師,感謝他們這四年來對我的栽培和教育。最后感謝我的父母,感謝你們養(yǎng)我、育我。參考文獻[1] 閆俊濤,功能性聚苯乙烯復(fù)合粒子的合成與性能研究[D],吉林大學(xué),2012.[2] —懸浮原位聚合反應(yīng)制備透明聚苯乙烯復(fù)合材料的研究[D],吉林大學(xué),2005. [3] 杜騁,楊軍,聚苯乙烯泡沫(EPS)的特性及應(yīng)用分析[J],東南大學(xué)學(xué)報,2001,138142.[4] 張靜志,采用新型表面活性劑超聲輻照乳液聚合制備聚苯乙烯納米粒子[D],成都:四 川大學(xué),2003.[5] 郭明洋,淺談家電中聚苯乙烯的應(yīng)用前景[J],化學(xué)工程與裝備,2010,131132[6] 李同年,周持興,乳液聚合法制備聚苯乙烯/蒙脫土插層復(fù)合材料[J],中國塑料, 2001, 15(06):3538.[7]史豐田 ,等規(guī)聚苯乙烯的高真空陰離子合成及其在一體化橡膠中的應(yīng)用[D],2011[8] 劉愷逸, 王昭群,制備單分散PS 納米粒子的新方法,南京大學(xué)學(xué)報,2006,170175.[9] 王奇,我國PS現(xiàn)狀分析與發(fā)展建議,石油化工技術(shù)與經(jīng)濟,2009,1921.[10] 王琨,聚苯乙烯的乳液聚合研究,吉林化工學(xué)院,2013,2831.[11] 王東波,馮玉杰,韓俐偉,聶玉梅,田言,乳液聚合制備聚苯乙烯納米微球[J],化 工新型材料,2007, 4849 . [12] 曹同玉,戴兵,戴俊燕,、大粒徑聚苯乙烯微球的制備,高分子學(xué)報, 1997,155165. [13] 張建民,孫秀果,彭政,高俊剛. 乳液聚合法制備核(二氧化鈦)–殼(聚苯乙烯). 復(fù) 合粒子[J].硅酸鹽學(xué)報,2008,36(03),330336.附錄I 外語文獻英文原文Synthesis of polystyreneclay nanoposites viaemulsion polymerization using a reactive surfactantSyed Qutubuddin, Xiaoan Fu, Yousuf TajuddinDepartment of Chemical Engineering, Case Western Reserve University, Cleveland,OH 44106, USAReceived: 27 February 2001 /Revised version: 14 February 2002 /Accepted: 14 February 2002SummaryPolystyreneclay nanoposites were synthesized via emulsion polymerization of styrene in the presence of montmorillonite particles and a reactive cationic surfactant as the emulsifier. The reactive surfactant, vinylbenzyldodecyldimethylammonium chloride (VDAC), was synthesized by the quaternization reaction of vinylbenzyl chlorideWith dimethyldodecylamine. Partially exfoliated nanoposites were achieved as revealed by Xray diffraction (XRD) and transmission electron microscopy(TEM). Polystyreneclay nanoposites prepared by emulsion polymerization have higher glass transition temperature and dynamic modulus than pure polystyrene.Keywords: clay, emulsion polymerization, montmorillonite, polymerizable surfactant, polystyrene, nanopositesIntroductionIn recent years, polymer nanoposites have attracted great interest because of dramatically improved properties pared with conventional posites [1]. Polymerclay nanoposites consist of clay nanolayers dispersed in a polymeric matrix [2, 3]. Polymerclay nanoposites exhibit enhanced thermal and mechanical properties [47], improved barrier properties [8, 9] and reduced flammability [10].Intercalated polystyrene (PS)clay nanoposites have been prepared via in situpolymerization of styrene in the presence of organophilic clay [11, 12]. Akelah et al. [13] synthesized intercalated PSclay nanoposites using a short chain reactive surfactant and solvents to facilitate intercalation. Qutubuddin and coworkers [14,15] synthesized exfoliated PSclay nanoposites via in situ polymerization of styrene and a reactive organoclay. Weimer et al. [16] prepared exfoliated PSclay nanoposites by anchoring a living free radical initiator inside the clay galleries. The synthesis of intercalated PSclay nanoposites was also achieved via polymer melt intercalation [17,18]. Hasegawa et al. [19] synthesized PS nanoposites via melt intercalation using an organoclay prepared by ion exchange with protonatedamineterminated PS. Exfoliated PSclay nanoposites were also prepared by melt blending of styrenevinyloxazoline copolymer with an organophilic clay [20]. Emulsion polymerization is a relatively new approach to synthesize polymerclay nanoposites. PSclay and poly(methylmethacrylate) (PMMA)clay nanoposites were synthesized via emulsion polymerization using an anionic surfactant (sodium lauryl sulfate) as emulsifier [21, 22]. PS?reactive organoclay intercalated nanoposites were prepared by emulsion polymerization [23]. The reactive organoclay was synthesized by exchanging the inorganic cations (Na+) with aminomethylstyrene. Since the alkyl chain of aminomethylstyrene is short, it is not very effective in expanding the clay interlayer [23]. Most recently, PMMAclay nanoposites Were synthesized by Emulsion polymerization With decyltrimethylammonium Chloride and [2methacryloyloxy)ethyl] trimethylammonium chloride to modify the surface of dispersed clay [24]. The synthesis of PSclay nanoposites via emulsion polymerization using a reactive surfactant is reported in this munication. The advantage of the present