【摘要】微積分理論數(shù)列的極限函數(shù)的極限微積分線性代數(shù)馮國(guó)臣2021/12/12定義如果對(duì)于任意給定的正數(shù)?(不論它多么小),總存在正數(shù)N,使得對(duì)于Nn?時(shí)的一切nx,不等式???axn都成立,那末就稱常數(shù)a是數(shù)列nx的極限,或者稱數(shù)列nx收斂于a,記為
2024-12-21 21:17
【摘要】如果先讓烏龜爬行一段路后,再讓劉翔去追,那么劉翔是永遠(yuǎn)也追不上烏龜?shù)摹?、談?wù)剟⑾枧c烏龜賽跑的問(wèn)題理由:劉翔追上烏龜之前,必須先到達(dá)烏龜?shù)某霭l(fā)點(diǎn),而這段時(shí)間內(nèi),烏龜又向前爬行了一段路,于是劉翔必須趕上這段路,于是烏龜又向前爬行了一路。。。,如此分析下去,劉翔離烏龜越來(lái)越近,但卻是永遠(yuǎn)也追不上烏龜。破解悖論
2025-02-21 08:27
【摘要】韓淑霞公共郵箱:,Key:135246私人郵箱:請(qǐng)每個(gè)小班的數(shù)學(xué)課代表將電話號(hào)碼給我電話:153271419031.分析基礎(chǔ):函數(shù),極限,連續(xù)2.微積分學(xué):一元微積分(上冊(cè))(下冊(cè))3.向量代數(shù)與空間解析幾何4.無(wú)窮級(jí)數(shù)
2025-06-20 23:22
【摘要】第五節(jié)機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束對(duì)坐標(biāo)的曲面積分一、基本概念觀察以下曲面的側(cè)(假設(shè)曲面是光滑的)曲面分上側(cè)和下側(cè)曲面分內(nèi)側(cè)和外側(cè)曲面法向量的指向決定曲面的側(cè).決定了側(cè)的曲面稱為有向曲面.曲面的投影問(wèn)題:面在xoyS?,在有向曲面Σ上取一小塊
2025-01-25 05:11
【摘要】變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為?21)(TTdttv設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv,求物體在這段時(shí)間內(nèi)所經(jīng)過(guò)的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問(wèn)題
2024-09-01 11:18
【摘要】微積分基本定理bxxxxxann????????1210?],[1iiixx???任取???niixf1)(?做和式:常數(shù))且有,(/))((lim10Anabfniin??????復(fù)習(xí):1、定積分是怎樣定義?設(shè)函數(shù)f(x)在[a,b]上連續(xù),在[a,b]中任意插
2025-06-16 01:42
【摘要】一、基本概念:具有某種特定性質(zhì)的事物的總體.組成這個(gè)集合的事物稱為該集合的元素.},,,{21naaaA??}{所具有的特征xxM?有限集無(wú)限集,Ma?,Ma?.,,的子集是就說(shuō)則必若BABxAx??.BA?記作數(shù)集分類:N自然數(shù)集Z整數(shù)集Q有理數(shù)集R實(shí)數(shù)集數(shù)集間的關(guān)系:
2025-03-09 00:54
【摘要】微積分基本定理微積分是研究各種科學(xué)的工具,在中學(xué)數(shù)學(xué)中是研究初等函數(shù)最有效的工具.恩格斯稱之為“17世紀(jì)自然科學(xué)的三大發(fā)明之一”.學(xué)習(xí)微積分的意義微積分的產(chǎn)生和發(fā)展被譽(yù)為“近代技術(shù)文明產(chǎn)生的關(guān)鍵事件之一,它引入了若干極其成功的、對(duì)以后許多數(shù)學(xué)的發(fā)展起決定性作用的思想.”微積分的建立,無(wú)
2025-03-08 21:34
【摘要】微積分(上)知識(shí)點(diǎn)微積分(上)復(fù)習(xí)2/58微積分(上)第一章函數(shù)函數(shù)的兩要素:定義域Df和對(duì)應(yīng)規(guī)則f,由f[?(x)]求f(x)奇偶性、單調(diào)性、有界性與周期性本義反函數(shù)、矯形反函數(shù))(1yfx??)(1xfy??單調(diào)函數(shù)一定存在反函數(shù)。成本函數(shù)、收益函
【摘要】預(yù)備知識(shí)一、充分條件、必要條件、充要條件1、定義:設(shè)A為條件,B為結(jié)論?若有A就有B,則稱A是B的充分條件,記作:AB?若有B必有A,則稱A是B的必要條件,記作:AB?若有A就有B,且有B必有A,則稱A是B的充要條件,記作:AB預(yù)備知識(shí)A
【摘要】§內(nèi)容回顧()dbafxx??定積分定義定積分的幾何意義:01lim()niiifx??????各部分面積的代數(shù)和可積的充分條件:1.2.且只有有限個(gè)間斷點(diǎn)定積分的性質(zhì)(設(shè)所列定積分都存在)0d)(??aaxxf1.dbax?(
【摘要】曲面繪圖多元函數(shù)微分3多元微積分實(shí)驗(yàn)多元函數(shù)積分常微分方程求解曲面繪圖曲面的一般方程是F(x,y,z)=0,在matlab中將曲面的點(diǎn)(x,y,z)的坐標(biāo)先表示出來(lái),再使用對(duì)應(yīng)的曲面繪圖函數(shù)。matlab常用的繪圖函數(shù)有:plot3,mesh,surf等。
2025-06-15 23:40
【摘要】§高階導(dǎo)數(shù).),()(),()(它的可導(dǎo)性點(diǎn)的函數(shù),仍可以考察內(nèi)的作為內(nèi)可導(dǎo),則它的導(dǎo)函數(shù)在設(shè)xbaxfbaxfy??,)()(,)(,)(0000點(diǎn)的二階導(dǎo)數(shù)在點(diǎn)的導(dǎo)數(shù)為在且稱點(diǎn)二階可導(dǎo)在則稱點(diǎn)可導(dǎo)在若xxfyxxfyxxfyxxfy????????.)dd,dd,()(
2025-06-16 02:10
【摘要】2022/4/14寧德師范高等專科學(xué)校1微積分的創(chuàng)立林壽2022/4/14寧德師范高等??茖W(xué)校2——牛頓時(shí)代微積分的創(chuàng)立人類數(shù)學(xué)最偉大的發(fā)明近代始于對(duì)古典時(shí)代的復(fù)興,但人們很快看到,它遠(yuǎn)不是一場(chǎng)復(fù)興,而是一個(gè)嶄新的時(shí)代。2022/4/14寧德師范高等??茖W(xué)校3?科學(xué)思想
2025-05-31 23:38
【摘要】bxxxxxann????????1210?],[1iiixx???任取???niixf1)(?做和式:常數(shù))且有,(/))((lim10Anabfniin??????復(fù)習(xí):1、定積分是怎樣定義?設(shè)函數(shù)f(x)在[a,b]上連續(xù),在[a,b]中任意插入n-1個(gè)分點(diǎn):
2025-06-21 22:34