【摘要】........中考真題匯編—相似三角形1、(2013?徐州)如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)(1)若△CEF與△ABC相似.①當AC=BC=2時,AD的
2025-05-12 06:30
【摘要】相似三角形說課稿各位評委,各位老師:大家好,我是趙勇連。今天我講的內容是義務教育課程標準實驗教科書北師大版八年級下冊第四章第5節(jié)《相似三角形》。我將從五個方面進行我的說課。一、教材分析(一)、教材所處的地位和作用:《相似三角形?》是義務教育課程標準實驗教科書北師大版八年級下冊第四章第5節(jié)內容。在此之前,學生已學習了線段的比,形狀相同的圖形及相似多邊形
2024-09-30 19:21
【摘要】相似三角形對應角相等,對應邊成比例的三角形叫相似三角形.三角形相似判定:,對應邊成比例。:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。1:兩角對應相等,兩三角形相似。2:兩邊對應成比例且夾角相等,兩三角形相似。
2025-01-12 12:54
【摘要】初三(下)相似三角形相似三角形經典習題例1從下面這些三角形中,選出相似的三角形.例2已知:如圖,ABCD中,,求與的周長的比,如果,求.例3如圖,已知∽,求證:∽.例4下列命題中哪些是正確的,哪些是錯誤的?(1)所有的直角三角形都相似.(2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相
2024-08-05 00:16
【摘要】......相似三角形綜合培優(yōu)題型基礎知識點梳理:知識點1有關相似形的概念(1)形狀相同的圖形叫相似圖形,在相似多邊形中,最簡單的是相似三角形.(2)如果兩個邊數(shù)相同的多邊形的對應角相等,
【摘要】九、如下圖,△ABC中,AD∥BC,連結CD交AB于E,且AE∶EB=1∶3,過E作EF∥BC,交AC于F,S△ADE=2cm2,求S△BCE,S△AEF.十一、下圖中,E為平行四邊形ABCD的對角線AC上一點,AE∶EC=1∶3,BE的延長線交CD的延長線于G,交AD于F,求證:BF∶FG=1∶2. 26.(2010年長沙)如圖,在平面直角坐標系中,矩形OABC的兩邊分別在x軸和y
2025-05-12 06:31
【摘要】相似三角形與全等三角形的綜合復習友情提示:請根據課本相關內容,快速解決下列問題,8分鐘后交流展示你的成果。【我反思,我梳理】(一)相似三角形1.定義:各角對應________,各邊對應成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角
2025-01-27 14:14
【摘要】1.已知:如圖,AB=AC,∠B=∠C.BE、DC交于O點.求證:BD=CE2.如圖在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任意一點.求證:PA=PD.3.已知:如圖,D、E分別是△ABC的邊AB,AC的中點,點F在DE的延長線上,且EF=DE.求證:(1)BD=FC(2)AB∥CF4.已知:如圖,AE=B
2025-05-11 07:40
【摘要】中考第一輪復習:相似三角形友情提示:請根據課本相關內容,快速解決下列問題,5分鐘后交流展示你的成果。【我反思,我梳理】(一)相似三角形1.定義:各角對應________,各邊對應成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角形一邊的直線
2025-02-02 11:56
【摘要】第一篇:相似三角形教案 相似三角形 【基礎知識精講】 1.理解相似三角形的意義,會利用定理判定兩個三角形相似,并能掌握相似三角形與全等三角形的關系. 2.進一步體會數(shù)學內容之間的內在聯(lián)系,初步...
2024-10-29 06:48
【摘要】一、下列各題有“病”嗎?如果有“病”,請寫出“病因”,沒有解答的,請你解答,并寫出你認為易讓別人犯錯的“陷阱”在哪兒?1:如圖1,要ΔADB∽ΔABC,那么還應增加的條件是_________.ACBD2:已知:如圖2,在□ABCD中,點E為邊CD上的一點,AE的延長線交BC的延長線于點F,請你寫出圖中的
【摘要】相似三角形證明專題訓練精選1、已知:如圖,DE∥BC,AF∶FB=AG∶GE。求證:ΔAFG∽ΔAED。2、已知:如圖,ΔABC中,CE⊥AB,BF⊥:ΔAEF∽ΔACB.3、如圖,∠ADC=∠ACB=900,∠1=∠B,AC=5,AB=6,求AD的長4、已知,如圖,在正方形ABCD中,P是BC上的點,且BP=3PC,Q是CD的中點,△ADQ與△QCP是否相似?
2025-05-12 06:32
【摘要】......全等三角形拔高練習A:AD平分∠BAC,AC=AB+BD,求證:∠B=2∠CCDB,中,AB=2AC,AD平分,且AD=BD,求證:CD⊥AC,四邊形ABCD中,AB∥DC
2025-05-11 07:39
【摘要】......圓與相似三角形專題訓練例1.如圖,PD切⊙O于D,PC=PD,B為⊙O上一點,PB交⊙O于A,連結AC、BC.求證:AC·PB=PC·BC證明:訓練1
2025-05-12 00:00
【摘要】學校( 九 )年級( 數(shù)學?。W案主備教師:審核人:日期:累計課時課題第周第課時課型新授課學習目標與重難點學習目標:.“平行線分線段成比例定理”、“平行出相似”定理。重點:“平行線分線段成比例定理”、“平行出相似”定理。難點:“平行線分線段成比例定理”、“平行出相似”定理。一、復習引入1、相似
2024-09-28 16:45