【摘要】05:202021/6/171/37§3插值法與曲線擬合實(shí)驗(yàn)數(shù)據(jù)統(tǒng)計(jì)處理插值法(Lagrange插值法)曲線擬合(最小二乘法)平行試驗(yàn)數(shù)據(jù)處理,誤差分析。根據(jù)實(shí)驗(yàn)測(cè)定的離散數(shù)據(jù),求未測(cè)的某點(diǎn)數(shù)據(jù)。根據(jù)實(shí)驗(yàn)測(cè)定的離散數(shù)據(jù),擬合曲線,分析數(shù)據(jù)規(guī)律,求函數(shù)表達(dá)式。
2025-07-18 03:12
【摘要】三次樣條插值?前面我們根據(jù)區(qū)間[a,b]上給出的節(jié)點(diǎn)做插值多項(xiàng)式Ln(x)近似表示f(x)。一般總以為L(zhǎng)n(x)的次數(shù)越高,逼近f(x)的精度越好,但實(shí)際并非如此,次數(shù)越高,計(jì)算量越大,也不一定收斂。因此高次插值一般要慎用,實(shí)際上較多采用分段低次插值。分段插值2,)1,(],[,1],[)(],[,,...
2025-07-17 07:52
【摘要】《數(shù)值分析》課程設(shè)計(jì)三次樣條插值算法院(系)名稱(chēng)信息工程學(xué)院專(zhuān)業(yè)班級(jí)09普本信計(jì)1班學(xué)號(hào)090111073學(xué)生姓名宣章然指導(dǎo)教師孔繁民
2025-03-05 15:54
【摘要】《數(shù)值分析》課程設(shè)計(jì)三次樣條插值算法院(系)名稱(chēng)信息工程學(xué)院專(zhuān)業(yè)班級(jí)09普本信計(jì)1班學(xué)號(hào)090111073學(xué)生姓名宣章然
2024-08-03 13:47
【摘要】1MATLAB插值與擬合§1曲線擬合實(shí)例:溫度曲線問(wèn)題氣象部門(mén)觀測(cè)到一天某些時(shí)刻的溫度變化數(shù)據(jù)為:t012345678910T1315171416192624262729試描繪出溫度變化曲線。曲線擬合就是計(jì)算出兩組數(shù)據(jù)之間的一種函數(shù)關(guān)系,由此可描繪其變化曲線及估計(jì)非采集
2024-10-24 07:08
【摘要】第四章多項(xiàng)式與插值§MATLAB與多項(xiàng)式一、多項(xiàng)式的建立1.MATLAB中多項(xiàng)式用行向量表示,其元素為多項(xiàng)式的系數(shù),且從左至右按降冪排列;2.已知一個(gè)多項(xiàng)式的全部根X,求多項(xiàng)式系數(shù)的函數(shù)是poly(X),該函數(shù)返回以X為全部根的一個(gè)多項(xiàng)式P(首項(xiàng)系數(shù)為1),當(dāng)X是一個(gè)長(zhǎng)度為
2025-03-08 15:15
【摘要】插值、擬合與MATLAB編程相關(guān)知識(shí)在生產(chǎn)和科學(xué)實(shí)驗(yàn)中,自變量與因變量間的函數(shù)關(guān)系有時(shí)不能寫(xiě)出解析表達(dá)式,而只能得到函數(shù)在若干點(diǎn)的函數(shù)值或?qū)?shù)值,或者表達(dá)式過(guò)于復(fù)雜而需要較大的計(jì)算量。當(dāng)要求知道其它點(diǎn)的函數(shù)值時(shí),需要估計(jì)函數(shù)值在該點(diǎn)的值。為了完成這樣的任務(wù),需要構(gòu)造一個(gè)比較簡(jiǎn)單的函數(shù),使函數(shù)在觀測(cè)點(diǎn)的值等于已知的值,或使函數(shù)在該點(diǎn)的導(dǎo)數(shù)值等于已知的值,尋找這樣的函數(shù)有很多方法。根據(jù)測(cè)
2024-08-03 15:18
【摘要】對(duì)于一個(gè)目的像素,其坐標(biāo)通過(guò)反向變換得到的在原圖中的浮點(diǎn)坐標(biāo)為(i+u,j+v),其中i、j均為非負(fù)整數(shù),u、v為[0,1)區(qū)間的浮點(diǎn)數(shù),雙三次插值考慮一個(gè)浮點(diǎn)坐標(biāo)(i+u,j+v)周?chē)?6個(gè)鄰點(diǎn),目的像素值f(i+u,j+v)可由如下插值公式得到: f(i+u,j+v)=[A]*[B]*[C][A]=[S(u+1) S(u+0) S(u-
2024-09-15 04:18
【摘要】TONGRENUNIVERSITY學(xué)號(hào):2021043012本科畢業(yè)論文關(guān)于幾種插值多項(xiàng)式的比較分析王曄系別:數(shù)學(xué)與計(jì)算機(jī)科
2025-05-02 01:50
【摘要】iiijjijiilxlbx?????11?????????????nnnnnnaaaaaaaaaA???????212222111211bAx?ni,,3,2??第3章插值法iiij
2025-07-16 09:59
【摘要】插值與擬合一、插值在工程實(shí)踐和科學(xué)實(shí)驗(yàn)中,常常需要從一組實(shí)驗(yàn)觀測(cè)數(shù)據(jù),揭表示自變量x與因變量y之間的關(guān)系,通??梢圆捎脙煞N方法:曲線擬合和插值.插值在工程實(shí)踐和科學(xué)實(shí)驗(yàn)中有著非常廣泛而又十分重要的應(yīng)用,例如,信息技術(shù)中的圖像重建、圖像放大中為避免圖像的扭曲失真的插值補(bǔ)點(diǎn)、建筑工程的外觀設(shè)計(jì)。化學(xué)工程實(shí)驗(yàn)數(shù)據(jù)與模型的分析、天文
2025-08-06 16:22
【摘要】2022數(shù)學(xué)建模集訓(xùn)班擬合與插值專(zhuān)題邊家文2022/11/06?在大量的應(yīng)用領(lǐng)域中,人們經(jīng)常面臨用一個(gè)解析函數(shù)描述數(shù)據(jù)(通常是測(cè)量值)的任務(wù)。對(duì)這個(gè)問(wèn)題有兩種方法。?一種是插值法,數(shù)據(jù)假定是正確的,要求以某種方法描述數(shù)據(jù)點(diǎn)之間所發(fā)生的情況。?另一種方法是曲線擬合或回歸。人們?cè)O(shè)法找出某條光滑曲線,它最佳地?cái)M合數(shù)據(jù),但
2025-08-03 03:41
【摘要】12:282021/11/101/37§3插值法與曲線擬合實(shí)驗(yàn)數(shù)據(jù)統(tǒng)計(jì)處理插值法(Lagrange插值法)曲線擬合(最小二乘法)平行試驗(yàn)數(shù)據(jù)處理,誤差分析。根據(jù)實(shí)驗(yàn)測(cè)定的離散數(shù)據(jù),求未測(cè)的某點(diǎn)數(shù)據(jù)。根據(jù)實(shí)驗(yàn)測(cè)定的離散數(shù)據(jù),擬合曲線,分析數(shù)據(jù)規(guī)律,求函數(shù)表達(dá)式。
2024-12-01 10:43
【摘要】第五章函數(shù)近似計(jì)算的插值法Newton插值法§均差(也稱(chēng)為差商)是數(shù)值方法中的一個(gè)重要概念,它可以反映出列表函數(shù)的性質(zhì),并能對(duì)Lagrange插值公式給出新的表達(dá)形式,這就是Newton插值。一、均差二、Newton插值公式三、等距節(jié)點(diǎn)的Newton插值公式四、Newton插值
2024-10-13 20:29
【摘要】第五章函數(shù)近似計(jì)算的插值法Hermite插值法§Hermite插值法§Lagrange插值雖然構(gòu)造比較簡(jiǎn)單,但插值曲線只是在節(jié)點(diǎn)處與原函數(shù)較吻合,若還要求在節(jié)點(diǎn)處兩者相切,即倒數(shù)值相等,使之與被插函數(shù)的”密切”程度更好,這就要用到帶導(dǎo)數(shù)的插值.0101(),,,,,