【正文】
,要弄清楚人在怎樣的條件下,人會更加愿意工作,更賣力,更有效。人的需要有生理、安全、友愛和歸屬、尊重、求知、求美、自我實現(xiàn)等需 要,獎勵、晉升、成長、責任感、成就感等等,而對于小苗來說,他更需要的是尊重、自我實現(xiàn)、成就感,而公司對他的獎勵更是對他成長很好的促進。( 2)威恩解決矛盾的方法是可行的。( 3)改善人 際關系一定要體現(xiàn)平等的原則、互利原則和相容的原則。這一過程啟發(fā)我們應該依據(jù)人際交往的原則,運用科學的方法,幫助下屬正確處理好人際關系方面的問題。( 2)院長為什么要撤劉工的組長職務?請用領導素質理論分析劉工的個人素質特點。( 5)這個案例對你有哪些啟示如何認識領導者權力的來源 答:( 1)由于程序缺乏公平,劉工缺乏管理能力,既想用權又想避免矛盾,引發(fā)沖突;又由于小組里形成以王工為首的非正式群體,帶來工作效率的下降,最后劉工放任自流,讓非正式群體占據(jù)主導地位。( 3)王工個人素質特點:比較清高自負,群眾基礎不太好。( 5)紅旗輕工設計院是一個走向市場、知識性員工聚集的企業(yè),這樣的企業(yè)要求自身的獨創(chuàng)能力比較強,要求獨立意識比較高,這樣的企業(yè)尋求彼此尊重,尋求平等的支撐系統(tǒng),企業(yè)尊重知識、人格和發(fā)明創(chuàng)造,對軟環(huán)境比對硬環(huán)境要求更高,這與其他技術含量低的企業(yè)的管理要求是不一樣的。 要求:請你分析為什么出現(xiàn)這種情況,并提出你的建議。試問職工們怎么能看到靠努力工作去晉升的前景呢?職工們只會向劉工下去巴結討好上司而不會去努力提高自己的業(yè)績了。劉工對組織本身就不負責任,還怎么能給予高位呢? ③選拔制度 雖然選了劉工來填補這個空位,但院長的選拔依據(jù)僅僅是因為劉工“聽話”,卻對劉工的其他方面知之甚少,院長本身對這個空位的職責也不大明確,為了一己之私利而做出的草率的決定。 從材料上看,設計院并沒有對劉工進行必要的管理知識方面的培訓,而事實證明劉工確實不符合這個空缺的要求,特別是他不懂得安撫員工、缺乏包容性、違背組織利益報私仇等不利組織穩(wěn)步發(fā)展的缺點。這回劉工誰也沒告訴,當仁不讓,悄悄地自己一個人去。 ,組織目標不明確 就去美國這件事情來說,在大家都可以去的情況下,派高工去的成本是最低的,而事實上是派了李工去,主管根本不考慮成本問題,無視組織利益;職工們在工作時間做別的事,也是對組織文化的一種不認同;還有劉工對李工無法順利進行工作的態(tài)度也是對組織文化的一種挑戰(zhàn),職工們沒有達成一種對組織創(chuàng)造利潤的共識。 個人建議: ,做到選拔有根有據(jù),并讓職工認同自己的主管; 好各方面的培訓工作,讓其與組織文化相融合,適應不斷變化的工作環(huán)境; ,制訂有效的獎懲職工行為的制度措施,提高員工的工作效率,提高組織的競爭力; 對組織利益的看法,讓制度占主導地位,并與人情相結合,降低內耗成本。改革后的組織結構是典型的直線職能結構:他包含了直線關系、參謀和委員會,管理層次分明,且具有集中領導,便 于調配人力、財力和物力;職責分明,有利于提高辦事效率;秩序井然,使整個組織有教高穩(wěn)定性的優(yōu)點。( 2) 唐文改革組織結構可能遇到以下問題:① 來自公司上下員工觀念上的阻力;② 因地位變化產(chǎn)生的阻力;③ 來自人們的生活習慣方面的阻力;④ 來自社會環(huán)境方面的阻力,如人們的職責或批評等。 請您刪除一下內容, O(∩ _∩ )O 謝謝!??! 2021 年中央電大期末復習考試小抄大全,電大期末考試必備小抄,電大考試必過小抄 Acetylcholine is a neurotransmitter released from nerve endings (terminals) in both the peripheral and the central nervous systems. It is synthesized within the nerve terminal from choline, taken up from the tissue fluid into the nerve ending by a specialized transport mechanism. The enzyme necessary for this synthesis is formed in the nerve cell body and passes down the axon to its end, carried in the axoplasmic flow, the slow movement of intracellular substance (cytoplasm). Acetylcholine is stored in the nerve terminal, sequestered in small vesicles awaiting release. When a nerve action potential reaches and invades the nerve terminal, a shower of acetylcholine vesicles is released into the junction (synapse) between the nerve terminal and the ‘effector’ cell which the nerve activates. This may be another nerve cell or a muscle or gland cell. Thus electrical signals are converted to chemical signals, allowing messages to be passed between nerve cells or between nerve cells and nonnerve cells. This process is termed ‘chemical neurotransmission’ and was first demonstrated, for nerves to the heart, by the German pharmacologist Loewi in 1921. Chemical transmission involving acetylcholine is known as ‘cholinergic’. Acetylcholine acts as a transmitter between motor nerves and the fibres of skeletal muscle at all neuromuscular junctions. At this type of synapse, the nerve terminal is closely apposed to the cell membrane of a muscle fibre at the socalled motor end plate. On release, acetylcholine acts almost instantly, to cause a sequence of chemical and physical events (starting with depolarization of the motor endplate) which cause contraction of the muscle fibre. This is exactly what is required for voluntary muscles in which a rapid response to a mand is required. The action of acetylcholine is terminated rapidly, in around 10 milliseconds。 in response to activation of this nerve supply, smooth muscle contracts (notably in the gut), the frequency of heart beat is slowed, and glands secrete. Acetylcholine is also an important transmitter at many sites in the brain at nervetonerve synapses. To understand how acetylcholine brings about a variety of effects in different cells it is necessary to understand membrane receptors. In postsynaptic membranes (those of the cells on which the nerve fibres terminate) there are many different sorts of receptors and some are receptors for acetylcholine. These are protein molecules that react specifically with acetylcholine in a reversible fashion. It is the plex of receptor bined with acetylcholine which brings about a biophysical reaction, resulting in the response from the receptive cell. Two major types of acetylcholine receptors exist in the membranes of cells. The type in skeletal muscle is known as ‘nicotinic’。 and there are some of each type in the brain. These terms are used because nicotine mimics the action of acetylcholine at nicotinic receptors, whereas muscarine, an alkaloid from the mushroom Amanita muscaria, mimics the action of acetylcholine at the muscarinic receptors. Acetylcholine is the neurotransmitter produced by neurons referred to as cholinergic neurons. In the peripheral nervous system acetylcholine plays a role in skeletal muscle movement, as well as in the regulation of smooth muscle and cardiac muscle. In the central nervous system acetylcholine is believed to be involved in learning, memory, and mo