freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

中考數學-易錯易錯壓軸勾股定理選擇題專題練習(附答案)100(4)-在線瀏覽

2025-04-01 22:51本頁面
  

【正文】 往往忽略這一點,造成丟解.2.B解析:B【解析】【分析】如圖,連接BB′.根據折疊的性質知△BB′E是等腰直角三角形,則BB′=BE.又B′E是BD的中垂線,則DB′=BB′.【詳解】∵四邊形ABCD是平行四邊形,BD=2,∴BE=BD=1.如圖2,連接BB′.根據折疊的性質知,∠AEB=∠AEB′=45176?!唷鰾B′E是等腰直角三角形,則BB′=BE=,又∵BE=DE,B′E⊥BD,∴DB′=BB′=.故選B.【點睛】考查了平行四邊形的性質以及等腰直角三角形性質.此題難度適中,注意掌握輔助線的作法,注意掌握數形結合思想的應用.3.B解析:B【分析】根據折疊前后得到對應線段相等,對應角相等判斷①③④式正誤即可,根據等腰直角三角形性質求BC和DE的關系.【詳解】解:根據折疊的性質知,△,且都是等腰直角三角形,∴,∴不能平分①錯誤;,,②正確;,,不是等腰三角形,故③錯誤;的周長,故④正確.故選:.【點睛】本題利用了:①折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②等腰直角三角形,三角形外角與內角的關系,等角對等邊等知識點.4.C解析:C【分析】根據AC=2AB,點D是AC的中點求出AB=CD,再根據△ADE是等腰直角三角形求出AE=DE,并求出∠BAE=∠CDE=135176。+45176?!螩DE=180176。=135176?!唷螪EC+∠BED=90176。是解題的關鍵,也是解決本題的突破口.5.B解析:B【分析】首先由,得知動點P在與AB平行且與AB的距離為3的直線上,作點A關于直線的對稱點E,連接AE、BE,則BE的長就是所求的最短距離,然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【詳解】解:∵, 設點P到CD的距離為h,則點P到AB的距離為(4h),則,解得:h=1,∴點P到CD的距離1,到AB的距離為3,∴如下圖所示,動點P在與AB平行且與AB的距離為3的直線上,作點A關于直線的對稱點E,連接AE、BE,且兩點之間線段最短,∴PA+PB的最小值即為BE的長度,AE=6,AB=3,∠BAE=90176。即可得出EQ∥BC,進而可得出,代入數據即可得出EQ的長度,此題得解.【詳解】解:如圖所示,過點D作DE⊥AB于點E,過點E作EQ⊥AC于點Q,EQ交AD于點P,連接CP,此時PC+PQ=EQ是最小值,在Rt△ABC中,∠ACB=90176。∴EQ∥BC,∴,.故選B.【點睛】本題考查了勾股定理、軸對稱中的最短路線問題以及平行線的性質,找出點C的對稱點E,及通過點E找到點P、Q的位置是解題的關鍵.7.C解析:C【分析】根據等腰三角形的三線合一得出∠ADB=90176。在Rt△ABD中,根據勾股定理得:BD===4BC=2BD=24=8.故選C.【點睛】本題考查了等腰三角形的性質及勾股定理,熟練掌握性質定理是解題的關鍵.8.D解析:D【分析】欲判斷三角形是否為直角三角形,這里給出三邊的長,需要驗證兩小邊的平方和等于最長邊的平方即可.【詳解】①c不一定是斜邊,故錯誤;②正確;③若△ABC是直角三角形,c不是斜邊,則a2+b2≠c2,故錯誤,所以正確的只有②,故選D.【點睛】本題考查了勾股定理以及勾股定理的逆定理,熟練掌握勾股定理以及勾股定理的逆定理的內容是解題的關鍵.9.A解析:A【解析】分析:直接利用勾股定理的逆定理進而結合直角三角形面積求法得出答案.詳解:∵52+122=132,∴三條邊長分別為5里,12里,13里,構成了直角三角形,∴這塊沙田面積為:550012500=7500000(平方米)=(平方千米).故選A.點睛:此題主要考查了勾股定理的應用,正確得出三角形的形狀是解題關鍵.10.B解析:B【分析】將正方體的左側面與前面展開,構成一個長方形,用勾股定理求出距離即可.【詳解】解:如圖,AB=.故選:B.【點睛】此題求最短路徑,我們將平面展開,組成一個直角三角形,利用勾股定理求出斜邊就可以了.11.C解析:C【解析】試題解析:如圖,∵大正方形的面積是25,∴c2=25,∴a2+b2=c2=25,∵直角三角形的面積是(251)247。故選B.【點睛】本題主要考查了勾股定理的逆定理,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.13.C解析:C【分析】記第三邊為c,然后分c為直角三角形的斜邊和直角邊兩種情況,利用勾股定理求解即可.【詳解】解:記第三邊為c,若c為直角三角形的斜邊,則;若c為直角三角形的直角邊,則.故選:C.【點睛】本題考查了勾股定理,屬于基本題目,正確分類、熟練掌握勾股定理
點擊復制文檔內容
規(guī)章制度相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1