freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx九年級數(shù)學-平行四邊形的專項-培優(yōu)練習題含答案-在線瀏覽

2025-04-01 22:02本頁面
  

【正文】 ∴AF=2,過點B′作B′N⊥AD,則四邊形AFB′N為矩形,∴AN=B′F=6,B′N=AF=2,∴DN=ADAN=2,在Rt△CB′N中,由勾股定理得,B′D= = ;綜上,可得B′D的長為或.【點睛】本題主要考查正方形的性質(zhì)與判定,矩形有性質(zhì)判定、勾股定理、折疊的性質(zhì)等,能正確地畫出圖形并能分類討論是解題的關(guān)鍵.6.如圖1,已知正方形ABCD的邊CD在正方形DEFG的邊DE上,連接AE,GC.(1)試猜想AE與GC有怎樣的關(guān)系(直接寫出結(jié)論即可);(2)將正方形DEFG繞點D按順時針方向旋轉(zhuǎn),使點E落在BC邊上,如圖2,連接AE和CG.你認為(1)中的結(jié)論是否還成立?若成立,給出證明;若不成立,請說明理由.(3)在(2)中,若E是BC的中點,且BC=2,則C,F(xiàn)兩點間的距離為  ?。敬鸢浮?1) AE=CG,AE⊥GC;(2)成立,證明見解析; (3) .【解析】【分析】(1)觀察圖形,AE、CG的位置關(guān)系可能是垂直,下面著手證明.由于四邊形ABCD、DEFG都是正方形,易證得△ADE≌△CDG,則∠1=∠2,由于∠∠3互余,所以∠∠3互余,由此可得AE⊥GC.(2)題(1)的結(jié)論仍然成立,參照(1)題的解題方法,可證△ADE≌△CDG,得∠5=∠4,由于∠∠7互余,而∠∠6互余,那么∠6=∠7;由圖知∠AEB=∠CEH=90176。由此得證.(3)如圖3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,則四邊形CMGH是矩形,可得CM=GH,CH=GM.想辦法求出CH,HF,再利用勾股定理即可解決問題.【詳解】(1)AE=CG,AE⊥GC;證明:延長GC交AE于點H,在正方形ABCD與正方形DEFG中,AD=DC,∠ADE=∠CDG=90176?!唷?+∠3=90176。﹣(∠1+∠3)=180176。=90176?!唷?=∠2=90176?!?+∠7=180176。﹣90176?!唷?=∠7,又∵∠6+∠AEB=90176?!唷螮HC=90176。(2)不相切,證明見解析;(3)t=、.【解析】【分析】(1)由題意得出AB=2BE,t=2時,BE=22=4,求出AB=2BE=8,AE=BE=4,t=11時,2t=22,得出BC=18,當t=0時,點P在E處,m=△AEQ的面積=AQAE=20即可;(2)當t=1時,PE=2,得出AP=AE+PE=6,由勾股定理求出PQ=2,設(shè)以PQ為直徑的圓的圓心為O39。N⊥BC于N,延長NO39。M∥AB,MN=AB=8,由三角形中位線定理得出O39。N=MNO39。的半徑,即可得出結(jié)論;(3)分三種情況:①當點P在AB邊上,A39。=PA,A39。Q=∠A=90176。F==6,得出A39。F=4,在Rt△A39。=AP=8(42t)=4+2t,由勾股定理得出方程,解方程即可;②當點P在BC邊上,A39。P=AP,證出∠APQ=∠AQP,得出AP=AQ=A39。落在CD邊上時,由折疊的性質(zhì)得:A39。Q=AQ=10,在Rt△DQA39。=6,得出A39。=2,在Rt△ABP和Rt△A39?!郟Q=,設(shè)以PQ為直徑的圓的圓心為O39。N⊥BC于N,延長NO39。M∥AB,MN=AB=8,∵O39。39。M=AP=3,∴O39。M=5<,∴以PQ為直徑的圓不與BC邊相切;(3)分三種情況:①當點P在AB邊上,A39。CD=AB=8,AD=BC=18,由折疊的性質(zhì)得:PA39。Q=AQ=10,∠PA39?!郃39。B=BFA39。BP中,BP=42t,PA39。落在BC邊上時,連接AA39。P=AP,∴∠APQ39。PQ,∵AD∥BC,∴∠AQP=∠A39。P=10,在Rt△ABP中,由勾股定理得:BP==6, 又∵BP=2t4,∴2t4=6,解得:t=5;③當點P在BC邊上,A39。P,如圖4所示:由折疊的性質(zhì)得:A39。Q=AQ=10,在Rt△DQA39。==6,∴A39。=2,在Rt△ABP和Rt△A39。P2=22+(222t)2,∴82+(2t4)2=22+(222t)2,解得:t=;綜上所述,t為或5或時,折疊后頂點A的對應點A′落在矩形的一邊上.【點睛】四邊形綜合題目,考查了矩形的性質(zhì)、折疊變換的性質(zhì)、勾股定理、函數(shù)圖象、直線與圓的位置關(guān)系、三角形中位線定理、等腰三角形的判定、以及分類討論等知識.9.如圖,現(xiàn)將平行四邊形ABCD沿其對角線AC折疊,使點B落在點B′處.AB′與CD交于點E.(1)求證:△AED≌△CEB′;(2)過點E作EF⊥AC交AB于點F,連接CF,判斷四邊形AECF的形狀并給予證明.【答案】(1)見解析(2)見解析【解析】【分析】(1)由題意可得AD=BC=B39。且∠AED=∠CEB39。C,∠B=∠B39。AD=B39。EC∴△ADE≌△B39。EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四邊形AECF是菱形【點睛】本題考查了折疊問題,全等三角形的判定和性質(zhì),平行四邊形的性質(zhì),菱形的判定,熟練掌握這些性質(zhì)和判定是解決問題的關(guān)鍵.10.問題情境在四邊形ABCD中,BA=BC,DC⊥AC,過點D作DE∥AB交BC的延長線于點E,M是邊AD的中點,連接MB,ME. 特例探究(1)如圖1,當∠ABC=90176。時,試探究線段MB與ME的數(shù)量關(guān)系,并證明你的結(jié)論; 拓展延伸(3)如圖3,當∠ABC=α時,請直接用含α的式子表示線段MB與ME之間的數(shù)量關(guān)系.【答案】(1)MB=ME,MB⊥ME;(2)ME=MB.證明見解析;(3)ME=MB即可;(3)結(jié)論:EM=BM?tan.證明方法類似;【詳解】(1) 如圖1中,連接CM.∵∠ACD=90176。BA=BC,∴∠MBE=∠ABC=45176?!逜B∥DE,∴∠ABE+∠DEC=180176?!唷螪CE=∠CDE=45176?!唷鰾ME是等腰直角三角形,∴BM=ME,BM⊥EM.故答案為BM=ME,BM⊥EM.(2)ME=M
點擊復制文檔內(nèi)容
物理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1