freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)備考之平行四邊形壓軸突破訓(xùn)練∶培優(yōu)-易錯-難題篇及答案解析(1)-在線瀏覽

2025-03-30 22:26本頁面
  

【正文】 并延長交直線DE于點P,F(xiàn)是AC′的中點,連接DF.(1)求∠FDP的度數(shù);(2)連接BP,請用等式表示AP、BP、DP三條線段之間的數(shù)量關(guān)系,并證明;(3)連接AC,若正方形的邊長為,請直接寫出△ACC′的面積最大值.【答案】(1)45176。DE和∠ADF=∠C39。=∠ADC=45176。(SAS),得BP=DP39。是等腰直角三角形,可得結(jié)論;(3)先作高線C39。在BD上時,C39。D,∠CDE=∠C39?!郃D=C39。的中點,∴DF⊥AC39。DF,∴∠FDP=∠FDC39。=∠ADC=45176?!虯P交PD的延長線于P39。=90176?!唷螪AP39?!摺螪FP=90176?!唷螾39。∴AP=AP39。中,∵,∴△BAP≌△DAP39。∴DP+BP=PP39。作C39。C=AC?C39。G最大值,△AC39。在BD上時,C39。D=,OD=AC=1,∴C39。C=.【點睛】本題考查四邊形綜合題、正方形的性質(zhì)、等腰直角三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.4.已知:如圖,在平行四邊形ABCD中,O為對角線BD的中點,過點O的直線EF分別交AD,BC于E,F(xiàn)兩點,連結(jié)BE,DF.(1)求證:△DOE≌△BOF.(2)當(dāng)∠DOE等于多少度時,四邊形BFDE為菱形?請說明理由.【答案】(1)證明見解析;(2)當(dāng)∠DOE=90176。時,四邊形BFDE為菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四邊形EBFD是平行四邊形,∵∠EOD=90176。如圖②所示,取DF中點G,連接EG,CG.問(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.(3)將圖①中△BEF繞B點旋轉(zhuǎn)任意角度,如圖③所示,再連接相應(yīng)的線段,問(1)中的結(jié)論是否仍然成立?(請直接寫出結(jié)果,不必寫出理由)【答案】(1)證明見解析(2)證明見解析(3)結(jié)論仍然成立【解析】【分析】(1)利用直角三角形斜邊上的中線等于斜邊的一半,可證出CG=EG.(2)結(jié)論仍然成立,連接AG,過G點作MN⊥AD于M,與EF的延長線交于N點;再證明△DAG≌△DCG,得出AG=CG;再證出△DMG≌△FNG,得到MG=NG;再證明△AMG≌△ENG,得出AG=EG;最后證出CG=EG.(3)結(jié)論依然成立.【詳解】(1)CG=EG.理由如下:∵四邊形ABCD是正方形,∴∠DCF=90176?!嗨倪呅蜛ENM是矩形,在矩形AENM中,AM=EN.在△AMG與△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.證法二:延長CG至M,使MG=CG,連接MF,ME,EC.在△DCG與△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE與Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90176?!唷鱉EC為直角三角形.∵MG=CG,∴EG=MC,∴EG=CG.(3)(1)中的結(jié)論仍然成立.理由如下:過F作CD的平行線并延長CG交于M點,連接EM、EC,過F作FN垂直于AB于N.由于G為FD中點,易證△CDG≌△MFG,得到CD=FM,又因為BE=EF,易證∠EFM=∠EBC,則△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90176。即∠MEC=90176。AB=AD,進而得到∠BAG與∠EAD互余,又DE垂直于AG,得到∠EAD與∠ADE互余,根據(jù)同角的余角相等可得出∠ADE=∠BAF,利用AAS可得出△ABF≌△DAE;利用全等三角的對應(yīng)邊相等可得出BF=AE,由AFAE=EF,等量代換可得證.【詳解】∵ABCD是正方形,∴AD=AB,∠BAD=90176?!唷螦DE+∠DAE=90176?!唷螦DE=∠BAF.∵BF∥DE,∴∠AFB=∠DEG=∠AED.在△ABF與△DAE中, ,∴△ABF≌△DAE(AAS).∴BF=AE.∵AF=AE+EF,∴AF=BF+EF.點睛:此題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),矩形的判定與性質(zhì),熟練掌握判定與性質(zhì)是解本題的關(guān)鍵.7.如圖(1)在正方形ABCD中,點E是CD邊上一動點,連接AE,作BF⊥AE,垂足為G交AD于F(1)求證:AF=DE;(2)連接DG,若DG平分∠EGF,如圖(2),求證:點E是CD中點;(3)在(2)的條件下,連接CG,如圖(3),求證:CG=CD.【答案】(1)見解析;(2)見解析;(3)CG=CD,見解析.【解析】【分析】(1)證明△BAF≌△ADE(ASA)即可解決問題.(2)過點D作DM⊥GF,DN⊥GE,垂足分別為點M,N.想辦法證明AF=DF,即可解決問題.(3)延長AE,BC交于點P,由(2)知DE=CD,利用直角三角形斜邊中線的性質(zhì),只要證明BC=CP即可.【詳解】(1)證明:如圖1中,在正方形ABCD中,AB=AD,∠BAD=∠D=90o,∴∠2+∠3=90176?!唷?+∠2=90176。AB=AD∴△BAG≌△ADN(AAS)∴AG=DN, 又DG平分∠EGF,DM⊥GF,DN⊥GE,∴DM=DN,∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF∴△AFG≌△DFM(AAS),∴AF=DF=DE=AD=CD,即點E是CD的中點.(3)延長AE,BC交于點P,由(2)知DE=CD,∠ADE=∠ECP=90176。.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折疊可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90176?!唷螮QC=90176。點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數(shù)量關(guān)系為  ?。?)(拓展研究)在(1)的條件下,如果正方形CDEF繞點C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請僅就圖2的情形給出證明;(3)(問題發(fā)現(xiàn))當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點共線時候,直接寫出線段AF的長.【答案】(1)BE=AF;(2)無變化;(3)AF的長為﹣1或+1.【解析】試題分析:(1)先利用等腰直角三角形的性質(zhì)得出AD= ,再得出BE=AB=2,即可得出結(jié)論;(2)先利用三角函數(shù)得出,同理得出,夾角相等即可得出△ACF∽△BCE,進而得出結(jié)
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1