freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)培優(yōu)(含解析)之平行四邊形含詳細(xì)答案-在線瀏覽

2025-03-30 22:26本頁面
  

【正文】 理由為:作AG⊥DE于G,得∠DAG=∠EAG,設(shè)∠DAG=∠EAG=α,根據(jù)∠FAE為∠BAE一半求出所求角度數(shù)即可.試題解析:(1)①當(dāng)點P在線段BC上時,∵∠EAP=∠BAP=30176。﹣30176。在△ADE中,AD=AE,∠DAE=30176。﹣30176。2=75176。+30176?!螦DF=75176。﹣60176。=45176。﹣∠BAF,∠ADF=45176。﹣∠DAF﹣∠ADF=45176。=45176。則∠AFD=90176。=45176。作AG⊥DE于G,得∠DAG=∠EAG,設(shè)∠DAG=∠EAG=α,∴∠BAE=90176。+α,∴∠FAG=∠FAE﹣∠EAG=45176。﹣45176。.考點:;;.4.操作與證明:如圖1,把一個含45176。其他條件不變,則(2)中的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.【答案】(1)證明參見解析;(2)相等,垂直;(3)成立,理由參見解析.【解析】試題分析:(1)根據(jù)正方形的性質(zhì)以及等腰直角三角形的知識證明出CE=CF,繼而證明出△ABE≌△ADF,得到AE=AF,從而證明出△AEF是等腰三角形;(2)DM、MN的數(shù)量關(guān)系是相等,利用三角形外角性質(zhì)和等腰三角形兩個底角相等性質(zhì),及全等三角形對應(yīng)角相等即可得出結(jié)論;(3)成立,連接AE,交MD于點G,標(biāo)記出各個角,首先證明出MN∥AE,MN=AE,利用三角形全等證出AE=AF,而DM=AF,從而得到DM,MN數(shù)量相等的結(jié)論,再利用三角形外角性質(zhì)和三角形全等,等腰三角形性質(zhì)以及角角之間的數(shù)量關(guān)系得到∠DMN=∠DGE=90176?!摺鰿EF是等腰直角三角形,∠C=90176。∴DM⊥MN;(3)(2)中的兩個結(jié)論還成立,連接AE,交MD于點G,∵點M為AF的中點,點N為EF的中點,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵點M為AF的中點,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可證:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90176。∴DM⊥MN.所以(2)中的兩個結(jié)論還成立.考點:;;;.5.如圖(1)在正方形ABCD中,點E是CD邊上一動點,連接AE,作BF⊥AE,垂足為G交AD于F(1)求證:AF=DE;(2)連接DG,若DG平分∠EGF,如圖(2),求證:點E是CD中點;(3)在(2)的條件下,連接CG,如圖(3),求證:CG=CD.【答案】(1)見解析;(2)見解析;(3)CG=CD,見解析.【解析】【分析】(1)證明△BAF≌△ADE(ASA)即可解決問題.(2)過點D作DM⊥GF,DN⊥GE,垂足分別為點M,N.想辦法證明AF=DF,即可解決問題.(3)延長AE,BC交于點P,由(2)知DE=CD,利用直角三角形斜邊中線的性質(zhì),只要證明BC=CP即可.【詳解】(1)證明:如圖1中,在正方形ABCD中,AB=AD,∠BAD=∠D=90o,∴∠2+∠3=90176。∴∠1+∠2=90176。AB=AD∴△BAG≌△ADN(AAS)∴AG=DN, 又DG平分∠EGF,DM⊥GF,DN⊥GE,∴DM=DN,∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF∴△AFG≌△DFM(AAS),∴AF=DF=DE=AD=CD,即點E是CD的中點.(3)延長AE,BC交于點P,由(2)知DE=CD,∠ADE=∠ECP=90176。.(2)IH=FH;(3)EG2=AG2+CE2.【解析】【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四邊形EBFD是平行四邊形,再證明EB=ED即可.②先證明∠ABD=2∠ADB,推出∠ADB=30176。得到△DCM,先證明△DEG≌△DEM,再證明△ECM是直角三角形即可解決問題.【詳解】(1)①證明:如圖1中,∵四邊形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中, ,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四邊形EBFD是平行四邊形,∵EF⊥BD,OB=OD,∴EB=ED,∴四邊形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90176?!螦BD=60176?!唷螮BF=60176。∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中, ,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60176。在△BIF和△MJI中,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120176?!唷螶IF=60176?!螴FH=60176?!郔H=FH.(3)結(jié)論:EG2=AG2+CE2.理由:如圖3中,將△ADG繞點D逆時針旋轉(zhuǎn)90176?!郃FED四點共圓,∴∠EDF=∠DAE=45176?!唷螦DF+∠EDC=45176。=∠EDG,在△DEM和△DEG中, ,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45176?!郋C2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【點睛】考查四邊形綜合題、矩形的性質(zhì)、正方形的性質(zhì)、菱形的判定和性質(zhì),等邊三角形的判定和性質(zhì),勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形,學(xué)會轉(zhuǎn)化的思想思考問題.7.(1)(問題發(fā)現(xiàn))如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90176?!鄐in∠ABC=,在正方形CDEF中,∠FEC=∠FED=45176?!唷螰CE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴ =,∴BE=AF,∴線段BE與AF的數(shù)量關(guān)系無變化;(3)當(dāng)點E在線段AF上時,如圖2,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根據(jù)勾股定理得,BF=,∴BE=BF﹣EF=﹣,由(2)知,BE=AF,∴AF=﹣1,當(dāng)點E在線段BF的延長線上時,如圖3,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45176。在Rt△CEF中,sin∠FEC= ,∴ ,∵∠FCE=∠ACB=45176。由翻折的性質(zhì)可知,∠DBE=∠EBC=∠DBC=21176。∴在Rt△CDF中,由勾股定理得:CF=,∴BF=BCCF=9,由翻折不變性可知,F(xiàn)B=FB′=,∴B′D=DFFB′=.【點睛】四邊形綜合題,考查了矩形的性質(zhì)、翻折變換的性質(zhì)、勾股定理、等腰三角形的判定、平行線的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會利用翻折不變性解決問題.9.如圖1,在正方形ABCD中,AD=6,點P是對角線BD上任意一點,連接PA,PC過點P作PE⊥PC交直線AB于E.(1) 求證:PC=PE。對角線平分對角的性質(zhì),三角形外角等于和它不相鄰的兩個內(nèi)角的和,等角對等邊等性質(zhì)容易得證。(3)根據(jù)已經(jīng)條件證出△MNQ是直角三角形,計算直角邊乘積的一半可得其面積.【詳解】(1) 證明:∵點P在對角線BD上,∴△ADP≌△CDP,∴AP=CP, ∠DAP =∠DCP,∵PE⊥PC,∴∠EPC=∠EPB+∠BPC=90176。+90176?!螧PC,∵∠PAE=90176?!螪CP,∠DCP=∠BPC∠PDC=∠BPC45176。(∠BPC45176。∠BPC,∴∠PEA=∠PAE,∴PC=PE。(3)如圖,∵E、Q關(guān)于BP對稱,PN∥CD,∴∠1=∠2,∠2+∠3=∠BDC=45176。,∴∠3=∠4,易證△PEM≌△PQM, △PNQ≌△PNC,∴∠5=∠6, ∠7=∠8 ,EM=QM,NQ=NC,∴
點擊復(fù)制文檔內(nèi)容
黨政相關(guān)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1