【摘要】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學橢圓的幾何性質(zhì)課后知能檢測蘇教版選修1-1一、填空題1.x2+2y2=2的上頂點坐標是________.【解析】將方程x2+2y2=2化為:x22+y2=1,∴a2=2,b2=1,∴b=1.∴上頂點坐標為(0,1).
2024-12-16 18:02
【摘要】復習::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當焦點在X軸上時當焦點在Y軸上時)0(12222????babyax)0(12222????
2024-11-30 08:57
【摘要】江蘇省漣水縣第一中學高中數(shù)學雙曲線的幾何性質(zhì)(1)教學案蘇教版選修1-1教學目標:1.了解雙曲線簡單幾何性質(zhì),如范圍、對稱性、頂點、漸近線和離心率等.2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題.教學重點:雙曲線的幾何性質(zhì)及初步運用.教學難點:雙曲線的漸近線.教學過程:一、復習提問引入新課1.橢圓有哪些幾何性
2024-12-02 00:31
【摘要】江蘇省建陵高級中學2021-2021學年高中數(shù)學雙曲線的幾何性質(zhì)(1)導學案(無答案)蘇教版選修1-1【學習目標】1、理解雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì);2、理解雙曲線標準方程中ab、、c的幾何意義?!菊n前預習】1、對于雙曲線22194yx??,它的頂點坐標為_____________
【摘要】江蘇省漣水縣第一中學高中數(shù)學拋物線的幾何性質(zhì)(1)教學案蘇教版選修1-1教學目標:掌握拋物線的幾何性質(zhì),能應用拋物線的幾何性質(zhì)解決問題.教學重點、難點:拋物線的幾何性質(zhì).教學方法:自主探究.課堂結(jié)構(gòu):一、復習回顧拋物線的標準方程有哪些?二、自主探究探究1類比橢圓、雙曲線的幾何性質(zhì),拋物線又會有怎樣的幾
【摘要】江蘇省建陵高級中學2020-2020學年高中數(shù)學橢圓的標準方程(1)導學案(無答案)蘇教版選修1-1【學習目標】,了解橢圓標準方程的推導方法;寫出橢圓的焦點坐標,會用待定系數(shù)法求橢圓的方程;【課前預習】1、橢圓定義的理解:2、橢圓的標準方程:3、橢圓的標準方程的推導:
【摘要】江蘇省漣水縣第一中學高中數(shù)學雙曲線的幾何性質(zhì)(2)教學案蘇教版選修1-1教學目標:1.了解雙曲線簡單幾何性質(zhì),如范圍、對稱性、頂點、漸近線和離心率等.2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題.教學重點:雙曲線的幾何性質(zhì)及初步運用.教學難點:雙曲線的漸近線.教學過程:一復習回顧1.雙曲線的標準方程和幾何性質(zhì)
2024-12-17 03:09
【摘要】§橢圓的簡單幾何性質(zhì)課時安排5課時從容說課本節(jié)主要是通過對橢圓的標準方程的討論,研究橢圓的幾何性質(zhì),而這種依據(jù)曲線的方法去討論曲線的幾何性質(zhì)是學習解析幾何以來的第一次,因此在教學中,不僅要注意對研究結(jié)果的理解和應用,而且應注意對研究方法的學習.由于學生己對由函數(shù)的解析式研究函數(shù)的性質(zhì)或其圖象的特點比較熟悉,所以在學習由
2024-12-20 22:39
【摘要】上圖所示是一些人造衛(wèi)星的繞地運行圖,這些衛(wèi)星的運行軌道,絕大多數(shù)是以地球的中心為一個焦點的橢圓,科學工作者常常根據(jù)近地距離與遠地距離來求這些衛(wèi)星運行軌道橢圓的近似方程。一.課標解讀:,初步掌握通過方程研究曲線性質(zhì)的方法。,掌握標準方程中的a,b,c,e的意義及a,b,c,e之間的關(guān)系。。二.學習目標:重點:利用橢
2024-11-29 11:59
【摘要】如何精確地設計、制作、建造出現(xiàn)實生活中這些橢圓形的物件呢?生活中的橢圓一.課題引入:?求動點軌跡方程的一般步驟:(1)建立適當?shù)淖鴺讼担糜行驅(qū)崝?shù)對(x,y)表示曲線上任意一點M的坐標;(2)寫出適合條件P(M);(3)用坐標表示條件P(M),列出方程;(
2024-11-29 23:32
【摘要】雙曲線的幾何性質(zhì)一、基礎過關(guān)1.雙曲線2x2-y2=8的實軸長是()A.2B.22C.4D.422.雙曲線3x2-y2=3的漸近線方程是()A.y=±3xB.y=±13xC.y=±3xD
2024-12-15 04:57
【摘要】江蘇省漣水縣第一中學高中數(shù)學橢圓的標準方程(2)教學案蘇教版選修1-1教學目標:1.掌握橢圓的標準方程及求標準方程的方法.[2.能根據(jù)橢圓的標準方程判定其焦點所在位置.教學重點:求橢圓標準方程的方法及根據(jù)方程確定焦點位置.教學難點:求橢圓標準方程的方法.教學過程:一、復習導引1.已知橢圓的方程為19252
【摘要】高二數(shù)學備課組的絕對值平面內(nèi)與兩個定點F1,F(xiàn)2的距離的差等于常數(shù)的點的軌跡叫做雙曲線.(小于︱F1F2︱)定義:oF2F1M12222??byax12222??b
2024-11-30 12:09
【摘要】新課標人教版課件系列《高中數(shù)學》選修1-1《雙曲線的簡單幾何性質(zhì)》教學目標?知識與技能目標?了解平面解析幾何研究的主要問題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).理解雙曲線的范圍、對稱性及對稱軸,對稱中心、離心率、頂點、漸近線的概念;掌握雙曲線的標準方程、會用雙曲線的定義解決實際
2024-12-12 12:26
【摘要】橢圓的幾何性質(zhì)(二)一、基礎過關(guān)1.橢圓x2+my2=1的焦點在x軸上,長軸長是短軸長的2倍,則m等于()B.2C.42.已知橢圓x24+y2=1的焦點為F1、F2,點M在該橢圓上,且MF1→·MF2→=0,則點M到y(tǒng)軸的距離
2024-12-15 11:30