【摘要】一元二次方程?學習目標:1.理解一元二次方程的概念;2.掌握一元二次方程的一般形式,正確認識二次項系數(shù)、一次項系數(shù)及常數(shù)項.?學習重點:一元二次方程的概念.1.創(chuàng)設情境,導入新知思考以下問題如何解決:1.要設計一座高2m的人體雕像,使它的上部(腰以上)與下部(腰以下)的高度比,等于下
2024-12-04 00:49
【摘要】(第二課時)1、自學P272、什么叫方程的解?3、一元二次方程的根的情況與一元一次方程有什么不同嗎?自學檢測1、下面哪些數(shù)是方程x2-x-6=0的根?-4-3-2-1012342、你能寫出方程x2-x=
2024-12-03 00:05
【摘要】等號兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程叫做一元二次方程(quadraticequationinoneunknown)一元二次方程的概念特點:①都是整式方程;②只含一個未知數(shù);③未知數(shù)的最高次數(shù)是2.ax2+bx+c
2024-11-18 18:38
【摘要】一元二次方程合作學習:列出下列問題中關于未知數(shù)x的方程:(1)把面積為4平方米的一張紙分割成如圖所示的正方形和長方形兩個部分,求正方形的邊長.設正方形的邊長為x,可列出方程為______________xxx3(2)據(jù)國家統(tǒng)計局公布的數(shù)據(jù),浙江省2020年全省實現(xiàn)生產(chǎn)總值6700億元,2020年生產(chǎn)總值達920
【摘要】綠苑小區(qū)住宅設計,準備在每兩幢樓房之間,開辟面積為900平方米的一塊長方形綠地,并且長比寬多10米,那么綠地的長和寬各為多少?設:長方形綠地的寬為x米,xx+10x(x+10)=900x2+10x-900=0由題意得:整理得:學校圖書館去年年底有圖書5萬冊,預計到明年年底增加到.求這兩年的年
2024-12-04 01:29
【摘要】一元二次方程復習例1將下列方程化為一般形式,并分別指出它們的二次項系數(shù)、一次項系數(shù)和常數(shù)項,并解方程1)2)2()43)(3(????xxx2)(x-2)(x+3)=83)22)2(4???xx例2:關于x的方程(m2
2024-08-31 00:39
【摘要】一元二次方程復習第一關知識要點說一說一元二次方程一元二次方程的定義一元二次方程的解法一元二次方程的應用方程兩邊都是整式ax2+bx+c=0(a?0)只含有一個未知數(shù)求知數(shù)的最高次數(shù)是2配方法求根公式法直接開平方法
2025-07-26 23:39
【摘要】一元二次方程九年級上冊?本課是在學生已經(jīng)學習一元一次方程、分式方程的基礎上,進一步學習一元二次方程的有關概念.課件說明?學習目標:1.理解一元二次方程的概念;2.掌握一元二次方程的一般形式,正確認識二次項系數(shù)、一次項系數(shù)及常數(shù)項.?學習重點:一元二次方程的概念.課件說明1.創(chuàng)設
2024-12-03 23:38
【摘要】一元二次方程好()讀書,不好()讀書;好()讀書,不好()讀書解:設花圃的寬是則花圃的長是。,xmmx)219(?2m(1)正方形桌面的面積是2m2,求它的邊長?xm解:設正方形桌面的邊長是(2)矩形花圃一面靠墻,另外三面所圍的柵欄的總長度是19米。如果花圃的面積是24m2,
2024-12-04 02:57
【摘要】5二次函數(shù)與一元二次方程,體會方程與函數(shù)之間的聯(lián)系.x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關系,理解何時方程有兩個不等的實數(shù)根、兩個相等的實數(shù)根和沒有實數(shù)根.x軸交點的橫坐標.ax2+bx+c=0的求根公式是什么?當b2-4ac≥0時,當b2-4ac0時,方程無實數(shù)根.aacbbx2
2024-12-04 02:31
【摘要】定義及一般形式:?只含有一個未知數(shù),未知數(shù)的最高次數(shù)是______的___式方程,叫做一元二次方程。?一般形式:________________二次整ax2+bx+c=o(a≠o)練習一1、判斷下面哪些方程是一元二次方程222221x2y24(
【摘要】課前熱身1、一元二次方程3y(y+1)=7(y+2)-5化為一般形式為;其中二次項系數(shù)為;一次項系數(shù)為;常數(shù)項為。3y2-4y-9=03-4-92、已知關于x的方程(k2-1)x2+kx-1=0為一元二次
2024-12-03 03:06
【摘要】第十二章一元二次方程第七節(jié)分式方程一教學目標1.使學生掌握可化為一元二次方程的分式方程的解法,能用去分母的方法或換元的方法求此類方程的解,并會驗根;2.通過本節(jié)課的教學,向?qū)W生滲透“轉(zhuǎn)化”的數(shù)學思想方法;3.通過本節(jié)的教學,繼續(xù)向?qū)W生滲透事物是相互聯(lián)系及相互轉(zhuǎn)化的辨證唯
【摘要】二次函數(shù)與一元二次方程觀察二次函數(shù)的圖象:223yxx???-3-2-10123-1-2-3123xy4NM你能確定一元二次方程的根嗎?2230xx???-3-2
2025-08-10 17:33
【摘要】學習目標1、理解掌握一元二次方程的四種解法;2、了解什么是配方法?3、會用配方法解一元二次方程。自學指導1、閱讀:P35——P362、思考:(1)了解什么是配方法?(2)會用配方法解一元二次方程。一般地,對于形如x2=a(a≥0)的方程,根據(jù)平方根的定義,可解得
2025-08-13 10:47