【摘要】三角函數(shù)的應(yīng)用【學(xué)習(xí)目標(biāo)】:,體會三角函數(shù)是描述周期現(xiàn)象的重要模型..【重點難點】:建立三角函數(shù)的模型一、預(yù)習(xí)指導(dǎo)1、三角函數(shù)可以作為描述現(xiàn)實世界中____________________________現(xiàn)象的一種數(shù)學(xué)模型.2、利用三角函數(shù)解決實際問題的一般步驟:(1)審題,獲取有用信息;(2)構(gòu)建三角函數(shù)
2024-12-10 16:29
【摘要】同角三角函數(shù)的關(guān)系(1)【學(xué)習(xí)目標(biāo)】1、掌握同角三角函數(shù)的兩個基本關(guān)系式2、能準(zhǔn)確應(yīng)用同角三角函數(shù)關(guān)系進(jìn)行化簡、求值3、對于同角三角函數(shù)來說,認(rèn)清什么叫“同角”,學(xué)會運用整體觀點看待角4、結(jié)合三角函數(shù)值的符號問題,求三角函數(shù)值【重點難點】同角三角函數(shù)的兩個基本關(guān)系式和應(yīng)用【自主學(xué)習(xí)】一、數(shù)學(xué)建構(gòu):
2024-12-01 12:32
【摘要】三角函數(shù)的誘導(dǎo)公式(2)【學(xué)習(xí)目標(biāo)】1、能進(jìn)一步運用誘導(dǎo)公式求出任意角的三角函數(shù)值2、能通過公式的運用,了解未知到已知、復(fù)雜到簡單的轉(zhuǎn)化過程3、進(jìn)一步準(zhǔn)確記憶并理解誘導(dǎo)公式,靈活運用誘導(dǎo)公式求值??谠E:奇變偶不變,符號看象限【重點難點】誘導(dǎo)公式的推導(dǎo)和應(yīng)用【自主學(xué)習(xí)】1、復(fù)習(xí)四組誘導(dǎo)公式:函數(shù)名
2024-12-10 16:30
【摘要】課題:二倍角的三角函數(shù)(2)班級:姓名:學(xué)號:第學(xué)習(xí)小組【【課前預(yù)習(xí)】1、??2sin;??2cos==;??2tan_______________;
2024-12-01 21:43
【摘要】三角函數(shù)的周期性【學(xué)習(xí)目標(biāo)】1、理解三角函數(shù)的周期性的概念;2、理解三角函數(shù)的周期性與函數(shù)的奇偶性之間的關(guān)系;3、會求三角函數(shù)的最小正周期,提高觀察、抽象的能力?!局攸c難點】函數(shù)周期性的概念;三角函數(shù)的周期公式一、預(yù)習(xí)指導(dǎo)1、對于函數(shù)()fx,如果存在一個___________T,使得定義域內(nèi)
【摘要】三角函數(shù)的誘導(dǎo)公式(1)【學(xué)習(xí)目標(biāo)】1、鞏固理解三角函數(shù)線知識,并能用三角函數(shù)線推導(dǎo)誘導(dǎo)公式2、能正確運用誘導(dǎo)公式求出任意角的三角函數(shù)值3、能通過公式的運用,了解未知到已知、復(fù)雜到簡單的轉(zhuǎn)化過程4、準(zhǔn)確記憶并理解誘導(dǎo)公式,靈活運用誘導(dǎo)公式求值口訣:函數(shù)名不變,符號看象限【重點難點】誘導(dǎo)公式的推導(dǎo)與運用
2024-12-01 12:31
【摘要】三角函數(shù)的誘導(dǎo)公式(3)【學(xué)習(xí)目標(biāo)】1、能進(jìn)一步運用誘導(dǎo)公式求出任意角的三角函數(shù)值2、能通過公式的運用,了解未知到已知、復(fù)雜到簡單的轉(zhuǎn)化過程3、進(jìn)一步準(zhǔn)確記憶并理解誘導(dǎo)公式,靈活運用誘導(dǎo)公式求值?!局攸c難點】誘導(dǎo)公式的綜合應(yīng)用【自主學(xué)習(xí)】1、____________1)cos()cos()(s
【摘要】課題:二倍角的三角函數(shù)(1)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】會用二倍角公式進(jìn)行求值、化簡和證明【課前預(yù)習(xí)】1.sin()????;cos();tan()????????2、角?的三角函數(shù)與角?2
2024-12-17 10:15
【摘要】三角函數(shù)的圖象與性質(zhì)(3)【學(xué)習(xí)目標(biāo)】1、能正確作出正切函數(shù)圖像;2、借助圖像理解正切函數(shù)的性質(zhì);【重點難點】正切函數(shù)的圖像與性質(zhì)一、預(yù)習(xí)指導(dǎo)1、利用正切線來畫出tan((,))22yxx?????的圖像.2、正切函數(shù)的圖像:
【摘要】三角函數(shù)的圖象與性質(zhì)(1)【學(xué)習(xí)目標(biāo)】1、能借助正弦線畫出正弦函數(shù)的圖象,并在此基礎(chǔ)上由平移正弦曲線的方法畫出余弦函數(shù)的圖象;2、會用五點法畫出正弦曲線和余弦曲線在一個周期上的草圖;3、借助圖象理解并運用正、余弦函數(shù)的定義域和值域?!局攸c難點】五點法作正、余弦函數(shù)的圖象;正、余弦函數(shù)的定義域和值域。一、預(yù)習(xí)指導(dǎo)
【摘要】復(fù)習(xí)舊知識?兩角和與差的正弦?????????cossincossin)sin(?????????cossincossin)sin(?兩角和與差的正切?????????sinsincoscos)cos(?????????sinsincoscos)cos(
2024-11-21 23:31
【摘要】§3二倍角的三角函數(shù)(一)sin(a+b)=sinacosbcosasinb.sin(a-b)=sinacosbcosasinb;cos(a+b)=cosacosbsinasinb;cos(a-b)=cosac
2024-08-10 13:31
【摘要】三角函數(shù)復(fù)習(xí)與小結(jié)【學(xué)習(xí)目標(biāo)】:;,誘導(dǎo)公式一級同角三角函數(shù)的基本關(guān)系;;)sin(????xAy的實際意義;,體會三角函數(shù)是描寫周期變化現(xiàn)象的重要教學(xué)模型.【重點難點】:三角函數(shù)的綜合應(yīng)用一、典例分析例1、已知角?的終邊經(jīng)過點)0)(4,3(??mmmP,求sin?,cos?
【摘要】1第3章三角恒等變換二倍角的三角函數(shù)2二倍角的三角函數(shù)公式22cos1???212sin??????cossinsin22????222sincoscos?????2122tantantan??3(3)8sincoscos
2024-11-30 08:49
【摘要】ks5u精品課件ks5u精品課件兩角和與差的正弦、余弦、正切公式????????sincoscossinsin????????????sinsincoscoscos????????????tantantantantan?1???????????sincos
2024-11-23 09:02