【摘要】【成才之路】2021-2021學年高中數(shù)學三視圖課時作業(yè)新人教B版必修2一、選擇題1.當圖形中的直線或線段不平行于投射線時,關于平行投影的性質,下列說法不正確的是()A.直線或線段的平行投影仍是直線或線段B.平行直線的平行投影仍是平行的直線C.與投射面平行的平面圖形,它的投影與這個圖形全等D.在同一直線或平行
2024-12-19 21:36
【摘要】研讀教材P11-P13:1.了解投影及其相關概念;2.投影的分類;3.研讀P12圖:如何得幾何體投影?研讀教材P12-P13:1.如何繪制幾何體的三視圖?三視圖間有哪些聯(lián)系?2.繪出圖–5圓柱和圓錐的三視圖,請你總結一下幾何體的三視圖研究方法?3.思考圖
2024-11-29 03:41
【摘要】誘導公式一.學習要點:誘導公式及其簡單應用二.學習過程:一、復習:誘導公式一:二、講解新課:公式二:公式三:公式四:公
2024-11-30 16:46
【摘要】3.2.2半角公式一。學習要點:半角公式及其簡單應用。二。學習過程:復習:升冪公式:降冪公式:新課學習:1.半角公式2.萬能公式例1已知(3,4)????,4cos5??,求sin,cos,tan222???例2已知si
2024-11-30 16:43
【摘要】誘導公式(二)崔文一、學習目標1.掌握誘導公式四、五的推導,并能應用解決簡單的求值、化簡與證明問題.2.對誘導公式一至五,能作綜合歸納,體會出五組公式的共性與個性,培養(yǎng)由特殊到一般的數(shù)學推理意識和能力.3.繼續(xù)體會知識的“發(fā)生”、“發(fā)現(xiàn)”過程,培養(yǎng)研究問題、發(fā)現(xiàn)問題、解決問題的能力.二、學習指導五組誘導公式可以概括為一
【摘要】2020年高中數(shù)學冪函數(shù)學案新人教B版必修1一、三維目標:1.理解冪函數(shù)的概念,會畫函數(shù)xy?,2xy?,3xy?,1??xy,21xy?的圖象.2.了解冪函數(shù)的圖象,理解冪函數(shù)圖象的變化情況和性質,并能進行簡單的應用.3.滲透辨證唯物主義觀點和方法論,培養(yǎng)學生運用具體問題具體分析的方法分析問題、
2024-12-01 23:24
【摘要】2.1.4數(shù)乘向量一.學習要點:數(shù)乘向量、向量共線和三點共線的判斷。二.學習過程:一、復習引入:1、向量的加法:2、向量的減法:二、講解新課:1、實數(shù)與向量的積引例1:已知非零向量a,作出aaa??和)()(aa???。探究:相同向量相加后,和的長度與方向有什么變化?定義:實數(shù)λ與向量a的積是
2024-12-09 23:46
【摘要】2.1.1向量的概念一.學習要點:向量的有關概念二.學習過程:一、復習:在現(xiàn)實生活中,我們會遇到很多量,其中一些量在取定單位后用一個實數(shù)就可以表示出來,如長度、質量等.還有一些量,如我們在物理中所學習的位移,是一個既有大小又有方向的量,這種量就是我們本章所要研究的向量.二、新課學習::
2024-12-09 23:47
【摘要】2.1.3向量的減法一.學習要點:向量的減法二.學習過程:一、復習:向量加法的法則:二、新課學習:1.用“相反向量”定義向量的減法(1)“相反向量”的定義:(2)規(guī)定:零向量的相反向量仍是零向量.?(?a)
【摘要】3.2.1倍角公式一。學習要點:二倍角公式及其簡單應用。二。學習過程:復習:和角公式.新課學習:sin2??cos2??tan2??升冪公式:降冪公式:例1、已知5sin2
【摘要】弧度制(1)學習要點:弧度制以及角度制與之換算關系。學習過程:(一)復習:度量角的大小第一種單位制—角度制的定義。(二)新課學習:1.1弧度角的定義:長度等于的弧所對的圓心角稱為的角。如圖:?AOB=1rad
【摘要】圓柱、圓錐、圓臺和球自主學習學習目標1.在復習圓柱、圓錐概念的基礎上了解圓臺和球的概念,并認識由這些幾何體組成的簡單組合體.2.會用旋轉的方法定義圓柱、圓錐、圓臺和球.會用集合的觀點定義球.3.理解這幾種幾何體的軸截面的概念和它在解決幾何體時的重要作用,提高動手操作能力.自學導引1.圓柱、圓錐、圓臺(1)_
2024-12-09 23:55
【摘要】誘導公式(一)崔文一、學習目標:1.了解三角函數(shù)的誘導公式的意義和作用.2.理解誘導公式的推導過程.3.能運用有關誘導公式解決一些三角函數(shù)的求值、化簡和證明問題.二、重點與難點:重點:誘導公式的記憶、理解、運用。難點:誘導公式的推導、記憶及符號的判斷;三、自學檢測誘導公式一~三(1)公式一:s
2024-12-09 23:50
【摘要】撰稿教師:李麗麗自學目標1.理解向量的概念,掌握向量的二要素(長度、方向);2.能正確地表示向量,初步學會求向量的模長;3.注意向量的特點:可以平行移動學習重、難點:1.向量、相等向量、共線向量的概念;2.向量的幾何表示學習過程一、課前準備(預習教材77頁~79頁,找出疑惑之處)二、新課導學(一)問題探
【摘要】§向量的加法(課前預習案)班級:___姓名:________編寫:一、新知導學a,b在平面上任取一點A,作AB=,BC=,再作向量AC,則向量叫做a與b的和(或),記作,即a+b=AB+B