【摘要】正弦函數(shù)、余弦函數(shù)的性質(zhì)一、近幾年三角函數(shù)知識(shí)的變動(dòng)情況三角函數(shù)一直是高中固定的傳統(tǒng)內(nèi)容,但近幾年對(duì)這部分內(nèi)容的具體要求變化較大.1998年4月21日,國(guó)家教育部專門(mén)調(diào)整了高中數(shù)學(xué)的部分教學(xué)內(nèi)容,其中的調(diào)整意見(jiàn)第(7)條為:“對(duì)三角函數(shù)中的和差化積、積化和差的8個(gè)公式,不要求記憶”.1998年全國(guó)高考數(shù)學(xué)卷中,已盡可能
2024-12-01 23:26
【摘要】正弦函數(shù)、余弦函數(shù)的性質(zhì)(一)【學(xué)習(xí)要求】1.了解周期函數(shù)、周期、最小正周期的定義.2.會(huì)求函數(shù)y=Asin(ωx+φ)及y=Acos(ωx+φ)的周期.3.掌握函數(shù)y=sinx,y=cosx的奇偶性,會(huì)判斷簡(jiǎn)單三角函數(shù)的奇偶性.【學(xué)法指導(dǎo)】1.在函數(shù)的周期定義中是對(duì)定義域中的每一個(gè)x值來(lái)說(shuō),對(duì)于個(gè)別的
【摘要】正弦函數(shù)、余弦函數(shù)的圖象重點(diǎn):“五點(diǎn)法”作正弦函數(shù)、余弦函數(shù)的圖象.難點(diǎn):正弦線平移轉(zhuǎn)化為正弦函數(shù)圖象上的點(diǎn);正弦函數(shù)與余弦函數(shù)圖象間的關(guān)系.一、用五點(diǎn)法作圖基本流程為:尋找角度→列表→描點(diǎn)→連線.例1.用“五點(diǎn)法”作出函數(shù)y=cos(x-π3)在一個(gè)周期內(nèi)的圖象.【思路點(diǎn)撥】本題利用“五點(diǎn)法”作圖的方法,
2024-12-01 20:39
【摘要】課題正弦函數(shù)、余弦函數(shù)的性質(zhì)(二)教學(xué)目標(biāo)知識(shí)與技能掌握y=sinx,y=cosx的單調(diào)性,并能利用單調(diào)性比較大小.會(huì)求函數(shù)y=Asin(ωx+φ)及y=Acos(ωx+φ)的單調(diào)區(qū)間.過(guò)程與方法研究正弦函數(shù)的變化趨勢(shì)時(shí)首先選取這一周期
【摘要】課題正弦函數(shù)、余弦函數(shù)的圖象教學(xué)目標(biāo)知識(shí)與技能了解利用單位圓中的正弦線畫(huà)正弦曲線的方法過(guò)程與方法掌握“五點(diǎn)法”畫(huà)正弦曲線和余弦曲線的步驟和方法,能用“五點(diǎn)法”作出簡(jiǎn)單的正、余弦曲線.情感態(tài)度價(jià)值觀研究函數(shù)的性質(zhì)常常以圖象直觀為基礎(chǔ),通過(guò)觀察函數(shù)的圖象,從圖象的特征獲得函數(shù)的性質(zhì)是一個(gè)基本方法
【摘要】1.正弦函數(shù)、余弦函數(shù)的圖象【學(xué)習(xí)要求】1.了解利用單位圓中的正弦線畫(huà)正弦曲線的方法.2.掌握“五點(diǎn)法”畫(huà)正弦曲線和余弦曲線的步驟和方法,能用“五點(diǎn)法”作出簡(jiǎn)單的正、余弦曲線.3.理解正弦曲線與余弦曲線之間的聯(lián)系.【學(xué)法指導(dǎo)】1.研究函數(shù)的性質(zhì)常常以圖象直觀為基礎(chǔ),通過(guò)觀察函數(shù)的圖象,從圖象的特征獲得函數(shù)的性質(zhì)
【摘要】課題正弦函數(shù)、余弦函數(shù)的性質(zhì)教學(xué)目標(biāo)知識(shí)與技能了解周期函數(shù)、周期、最小正周期的定義.過(guò)程與方法會(huì)求函數(shù)y=Asin(ωx+φ)及y=Acos(ωx+φ)的周期情感態(tài)度價(jià)值觀掌握函數(shù)y=sinx,y=cosx的奇偶性,會(huì)判斷簡(jiǎn)單三角函數(shù)的奇偶性.重點(diǎn)判斷函數(shù)的奇偶性應(yīng)堅(jiān)持“
【摘要】正弦函數(shù)、余弦函數(shù)的圖象一、備用習(xí)題“五點(diǎn)法”畫(huà)出下列函數(shù)的圖象:(1)y=2-sinx,x∈[0,2π];(2)y=21+sinx,x∈[0,2π].2x=cosx的解的個(gè)數(shù)為()12
【摘要】正弦函數(shù)、余弦函數(shù)的圖像和性質(zhì)(一)一.知識(shí)回顧1.三角函數(shù)是以角(實(shí)數(shù))為自變量的函數(shù).2.常用畫(huà)圖的方法:描點(diǎn)法y=sinx過(guò)點(diǎn)故介紹另一種畫(huà)法幾何法(即利用三角函數(shù)線畫(huà)圖)ysinx,xR,??ycosx,xR??(,sin),(,s
2024-12-12 11:29
【摘要】正弦函數(shù)、余弦函數(shù)的性質(zhì)1.函數(shù)y=-cosx在區(qū)間??????-π2,π2上是()A.增函數(shù)B.減函數(shù)C.先減后增函數(shù)D.先增后減函數(shù)解析:結(jié)合函數(shù)在??????-π2,π2上的圖象可知C正確.答案:C2.已知函數(shù)y=3cos(π-x),則當(dāng)x=___________
【摘要】正弦函數(shù)、余弦函數(shù)的圖象1.用“五點(diǎn)法”作函數(shù)y=cos2x,x∈R的圖象時(shí),首先應(yīng)描出的五個(gè)點(diǎn)的橫坐標(biāo)是()A.0,π2,π,3π2,2πB.0,π4,π2,3π4,πC.0,π,2π,3π,4πD.0,π6,π3,π2,2π3解析:令2x=0
【摘要】正弦函數(shù)、余弦函數(shù)的性質(zhì)考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難三角函數(shù)的單調(diào)區(qū)間問(wèn)題17三角函數(shù)的最值(值域)問(wèn)題2、510、11比較大小問(wèn)題39綜合問(wèn)題4、68121.函數(shù)y=|sinx|的一個(gè)單調(diào)增區(qū)間是()A.??????-π4,π4
【摘要】正弦函數(shù)、余弦函數(shù)的圖象考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難正、余弦函數(shù)的圖象1、2、4、59“五點(diǎn)法”作圖8、12正、余弦函數(shù)圖象的應(yīng)用3、67、10、11131.正弦函數(shù)y=sinx,x∈R的圖象的一條對(duì)稱軸是()A.x軸B.y
【摘要】正弦函數(shù)、余弦函數(shù)的圖象(說(shuō)課稿)一、說(shuō)教材二、說(shuō)教法三、說(shuō)學(xué)法四、說(shuō)教學(xué)過(guò)程一說(shuō)教材2.教學(xué)目標(biāo)3.重點(diǎn)、難點(diǎn)③德育目標(biāo):(1)培養(yǎng)學(xué)生勇于探索、勤于思考的精神;(2)培養(yǎng)學(xué)生合作學(xué)習(xí)和數(shù)學(xué)交流的能力;1.教材的地位和作用①知識(shí)目標(biāo):正弦
2024-11-22 22:24
【摘要】正弦函數(shù)、余弦函數(shù)的圖象復(fù)習(xí)回顧:三角函數(shù)線xyo135o角的正弦線為MP;余弦線為OM;正切線為AT。PA(1,0)TM135o135o的三角函數(shù)線:問(wèn)題提出:1.任意給定一個(gè)實(shí)數(shù)x,對(duì)應(yīng)的正弦值(sinx)、余弦值(cosx)是否存在?惟一
2024-12-12 14:52