freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

matlab圖像拼接算法及實(shí)現(xiàn)-展示頁

2024-08-20 00:43本頁面
  

【正文】 程是設(shè)計(jì)一個(gè)濾波器,使其能從失真圖象中計(jì)算得到真實(shí)圖象的估值,使其根據(jù)預(yù)先規(guī)定的誤差準(zhǔn)則,最大程度地接近真實(shí)圖象。因此,解決幾何畸變的問題顯得很重要。另外,由于光學(xué)成像系統(tǒng)或電子掃描系統(tǒng)的限制而產(chǎn)生的枕形或桶形失真,也是幾何畸變的典型情況?! ?圖像的預(yù)處理    圖像的校正   當(dāng)照相系統(tǒng)的鏡頭或者照相裝置沒有正對著待拍攝的景物時(shí)候,那么拍攝到的景物圖像就會(huì)產(chǎn)生一定的變形。另一種是固定照相機(jī)的光心 ,水平搖動(dòng)鏡頭所拍攝的照片。圖像融合就是為了讓圖像間的拼接縫隙不明顯,拼接更自然   圖像的獲取方式   圖像拼接技術(shù)原理是根據(jù)圖像重疊部分將多張銜接的圖像拼合成一張高分辨率全景圖 。由于任何兩幅相鄰圖像在采集條件上都不可能做到完全相同,因此,對于一些本應(yīng)該相同的圖像特性,如圖像的光照特性等,在兩幅圖像中就不會(huì)表現(xiàn)的完全一樣。待拼接的圖像之間,可能存在平移、旋轉(zhuǎn)、縮放等多種變換或者大面積的同色區(qū)域等很難匹配的情況,一個(gè)好的圖像配準(zhǔn)算法應(yīng)該能夠在各種情況下準(zhǔn)確找到圖像間的對應(yīng)信息,將圖像對齊。圖像配準(zhǔn)主要指對參考圖像和待拼接圖像中的匹配信息進(jìn)行提取,在提取出的信息中尋找最佳的匹配,完成圖像間的對齊。在圖像質(zhì)量不理想的情況下進(jìn)行圖像拼接,如果不經(jīng)過圖像預(yù)處理,很容易造成一些誤匹配。 圖像拼接的基礎(chǔ)理論及圖像預(yù)處理       本章小結(jié)   本章主要對圖像拼接技術(shù)作了整體的概述,介紹了圖像拼接的研究背景和應(yīng)用前景,以圖像拼接算法的分類和其技術(shù)難點(diǎn),并且對全文研究內(nèi)容進(jìn)行了總體介紹。第五章主要介紹圖像拼接軟件實(shí)現(xiàn)本文的算法。第三章主要介紹討論了圖像配準(zhǔn)的多種算法?! ”疚牡慕M織結(jié)構(gòu):  第一章主要對圖像拼接技術(shù)作了整體的概述,介紹了圖像拼接的研究背景和應(yīng)用前景,以及圖像拼接技術(shù)的大致過程、圖像拼接算法的分類和其技術(shù)難點(diǎn)。 (3) 學(xué)習(xí)和研究了常用的圖像融合算法。   本文的主要工作:(1) 總結(jié)了前人在圖像拼接方面的技術(shù)發(fā)展歷程和研究成果。抽取出來的空間特征有閉合的邊界、開邊界、交叉線以及其他特征。一系列的圖像分割技術(shù)都被用到特征的抽取和邊界檢測上。首先從兩幅圖像中提取灰度變化明顯的點(diǎn)、線、區(qū)域等特征形成特征集岡。 基于特征的配準(zhǔn)方法不是直接利用圖像的像素值,而是通過像素導(dǎo)出圖像的特征,然后以圖像特征為標(biāo)準(zhǔn),對圖像重疊部分的對應(yīng)特征區(qū)域進(jìn)行搜索匹配,該類拼接算法有比較高的健壯性和魯棒性。另一種方法是計(jì)算兩塊區(qū)域的對應(yīng)像素點(diǎn)灰度值的相關(guān)系數(shù),相關(guān)系數(shù)越大,則兩塊圖像的匹配程度越高。當(dāng)以兩塊區(qū)域像素點(diǎn)灰度值的差別作為判別標(biāo)準(zhǔn)時(shí),最簡單的一種方法是直接把各點(diǎn)灰度的差值累計(jì)起來。也可以通過FFT 變換將圖像由時(shí)域變換到頻域,然后再進(jìn)行配準(zhǔn)。 這是最為傳統(tǒng)和最普遍的算法。根據(jù)圖像匹配方法的不同仁闊,一般可以將圖像拼接算法分為以下兩個(gè)類型:  (1) 基于區(qū)域相關(guān)的拼接算法。從以上方面可以看出,圖像拼接技術(shù)的應(yīng)用前景十分廣闊,深入研究圖像拼接技術(shù)有著很重要的意義     圖像拼接作為這些年來圖像研究方面的重點(diǎn)之一,國內(nèi)外研究人員也提出了很多拼接算法。所以把相鄰的各幅圖像拼接起來是實(shí)現(xiàn)遠(yuǎn)程數(shù)據(jù)測量和遠(yuǎn)程會(huì)診的關(guān)鍵環(huán)節(jié)圓。這樣的全景圖像相當(dāng)于人站在原地環(huán)顧四周時(shí)看到的情形。這種基于全景圖的虛擬現(xiàn)實(shí)系統(tǒng),通過全景圖的深度信息抽取,恢復(fù)場景的三維信息,進(jìn)而建立三維模型。利用圖像拼接技術(shù),拼接機(jī)器人雙目采集的圖像,可以增大機(jī)器人的視野,給機(jī)器人的視覺導(dǎo)航提供方便。這在紅外預(yù)警中起到了很大的作用。但是在實(shí)際應(yīng)用中,很多時(shí)候需要將360 度所拍攝的很多張圖片合成一張圖片,從而可以使觀察者可以觀察到周圍的全部情況。近年來隨著圖像拼接技術(shù)的研究和發(fā)展,它使基于圖像的繪制(IBR)成為結(jié)合兩個(gè)互補(bǔ)領(lǐng)域——計(jì)算機(jī)視覺和計(jì)算機(jī)圖形學(xué)的堅(jiān)決焦點(diǎn),在計(jì)算機(jī)視覺領(lǐng)域中,圖像拼接成為對可視化場景描述(Visual Scene Representaions)的主要研究方法:在計(jì)算機(jī)形學(xué)中,現(xiàn)實(shí)世界的圖像過去一直用于環(huán)境貼圖,即合成靜態(tài)的背景和增加合成物體真實(shí)感的貼圖,圖像拼接可以使IBR從一系列真是圖像中快速繪制具有真實(shí)感的新視圖。圖像拼接解決的問題一般式,通過對齊一系列空間重疊的圖像,構(gòu)成一個(gè)無縫的、高清晰的圖像,它具有比單個(gè)圖像更高的分辨率和更大的視野。In general, the process of image mosaic by the image acquisition, image registration, image synthesis of three steps, one of image registration are the basis of the entire image mosaic. In this paper, two image registration algorithm: Based on the characteristics and transform domainbased image registration algorithm. In featurebased registration algorithm based on a robust featurebased registration algorithm points. First of all, to improve the Harris corner detection algorithm, effectively improve the extraction of feature points of the speed and accuracy. And the use of a similar measure of NCC (normalized cross correlation Normalized crosscorrelation), through the largest correlation coefficient with twoway matching to extract the feature points out the initial right, using random sampling method RANSAC (Random Sample Consensus) excluding pseudofeature points right, feature points on the implementation of the exact match. Finally with the correct feature point matching for image registration implementation. In this paper, the algorithm adapted, in the repetitive texture, such as relatively large rotation more difficult to automatically match occasions can still achieve an accurate image registration.  Key words: image mosaic, image registration, image fusion, panorama  第一章本文提出的算法適應(yīng)性較強(qiáng),在重復(fù)性紋理、旋轉(zhuǎn)角度比較大等較難自動(dòng)匹配場合下仍可以準(zhǔn)確實(shí)現(xiàn)圖像配準(zhǔn)。然后利用相似測度NCC(normalized cross correlation——?dú)w一化互相關(guān)),通過用雙向最大相關(guān)系數(shù)匹配的方法提取出初始特征點(diǎn)對,用隨機(jī)采樣法RANSAC(Random Sample Consensus)剔除偽特征點(diǎn)對,實(shí)現(xiàn)特征點(diǎn)對的精確匹配。 在基于特征的配準(zhǔn)算法的基礎(chǔ)上,提出一種穩(wěn)健的基于特征點(diǎn)的配準(zhǔn)算法。 一般來說,圖像拼接的過程由圖像獲取,圖像配準(zhǔn),圖像合成三步驟組成,其中圖像配準(zhǔn)是整個(gè)圖像拼接的基礎(chǔ)。圖像拼接算法及實(shí)現(xiàn)(一)論文關(guān)鍵詞:圖像拼接 圖像配準(zhǔn) 圖像融合 全景圖  論文摘要:圖像拼接(image mosaic)技術(shù)是將一組相互間重疊部分的圖像序列進(jìn)行空間匹配對準(zhǔn),經(jīng)重采樣合成后形成一幅包含各圖像序列信息的寬視角場景的、完整的、高清晰的新圖像的技術(shù)。圖像拼接在攝影測量學(xué)、計(jì)算機(jī)視覺、遙感圖像處理、醫(yī)學(xué)圖像分析、計(jì)算機(jī)圖形學(xué)等領(lǐng)域有著廣泛的應(yīng)用價(jià)值。本文研究了兩種圖像配準(zhǔn)算法:基于特征和基于變換域的圖像配準(zhǔn)算法。首先改進(jìn)Harris角點(diǎn)檢測算法,有效提高所提取特征點(diǎn)的速度和精度。最后用正確的特征點(diǎn)匹配對實(shí)現(xiàn)圖像的配準(zhǔn)?! bstract:Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, puter vision, remote sensing image processing, medical image analysis, puter graphic and so on. 。 緒論    圖像拼接技術(shù)的研究背景及研究意義   圖像拼接(image mosaic)是一個(gè)日益流行的研究領(lǐng)域,他已經(jīng)成為照相繪圖學(xué)、計(jì)算機(jī)視覺、圖像處理和計(jì)算機(jī)圖形學(xué)研究中的熱點(diǎn)?! ≡缙诘膱D像拼接研究一直用于照相繪圖學(xué),主要是對大量航拍或衛(wèi)星的圖像的整合?! ≡谲娛骂I(lǐng)域網(wǎng)的夜視成像技術(shù)中,無論夜視微光還是紅外成像設(shè)備都會(huì)由于攝像器材的限制而無法拍攝視野寬闊的圖片,更不用說360 度的環(huán)形圖片了。使用圖像拼接技術(shù),在根據(jù)拍攝設(shè)備和周圍景物的情況進(jìn)行分析后,就可以將通過轉(zhuǎn)動(dòng)的拍攝器材拍攝的涵蓋周圍360 度景物的多幅圖像進(jìn)行拼接,從而實(shí)時(shí)地得到超大視角甚至是360 度角的全景圖像?! ∥⑿⌒吐膸揭苿?dòng)機(jī)器人項(xiàng)目中,單目視覺不能滿足機(jī)器人的視覺導(dǎo)航需要,并且單目視覺機(jī)器人的視野范圍明顯小于雙目視覺機(jī)器人的視野。在虛擬現(xiàn)實(shí)領(lǐng)域中,人們可以利用圖像拼接技術(shù)來得到寬視角的圖像或360 度全景圖像,用來虛擬實(shí)際場景。這個(gè)系統(tǒng)允許用戶在虛擬環(huán)境中的一點(diǎn)作水平環(huán)視以及一定范圍內(nèi)的俯視和仰視,同時(shí)允許在環(huán)視的過程中動(dòng)態(tài)地改變焦距。在醫(yī)學(xué)圖像處理方面,顯微鏡或超聲波的視野較小,醫(yī)師無法通過一幅圖像進(jìn)行診視,同時(shí)對于大目標(biāo)圖像的數(shù)據(jù)測量也需要把不完整的圖像拼接為一個(gè)整體。在遙感技術(shù)領(lǐng)域中,利用圖像拼接技術(shù)中的圖像配準(zhǔn)技術(shù)可以對來自同一區(qū)域的兩幅或多幅圖像進(jìn)行比較,也可以利用圖像拼接技術(shù)將遙感衛(wèi)星拍攝到的有失真地面圖像拼接成比較準(zhǔn)確的完整圖像,作為進(jìn)一步研究的依據(jù)。圖像拼接的質(zhì)量,主要依賴圖像的配準(zhǔn)程度,因此圖像的配準(zhǔn)是拼接算法的核心和關(guān)鍵?;趨^(qū)域的配準(zhǔn)方法是從待拼接圖像的灰度值出發(fā),對待配準(zhǔn)圖像中一塊區(qū)域與參考圖像中的相同尺寸的區(qū)域使用最小二乘法或者其它數(shù)學(xué)方法計(jì)算其灰度值的差異,對此差異比較后來判斷待拼接圖像重疊區(qū)域的相似程度,由此得到待拼接圖像重疊區(qū)域的范圍和位置,從而實(shí)現(xiàn)圖像拼接。對位移量比較大的圖像,可以先校正圖像的旋轉(zhuǎn),然后建立兩幅圖像之間的映射關(guān)系。這種辦法效果不是很好,常常由于亮度、對比度的變化及其它原因?qū)е缕唇邮?。該方法的拼接效果要好一些,成功率有所提高?2) 基于特征相關(guān)的拼接算法。基于特征的配準(zhǔn)方法有兩個(gè)過程:特征抽取和特征配準(zhǔn)。然后在兩幅圖像對應(yīng)的特征集中利用特征匹配算法盡可能地將存在對應(yīng)關(guān)系的特征對選擇出來。如canny 算子、拉普拉斯高斯算子、區(qū)域生長。特征匹配的算法有:交叉相關(guān)、距離變換、動(dòng)態(tài)編程、結(jié)構(gòu)匹配、鏈碼相關(guān)等算法。(2) 學(xué)習(xí)和研究了前人的圖像配準(zhǔn)算法。 (4) 用matlab實(shí)現(xiàn)本文中的圖像拼接算法(5) 總結(jié)了圖像拼接中還存在的問題,對圖像拼接的發(fā)展方向和應(yīng)用
點(diǎn)擊復(fù)制文檔內(nèi)容
物理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1