【摘要】切點三角形的應用如圖,⊙O1與⊙O2外切于A,它們的半徑分別為R和r,直線BC是⊙O1與⊙O2的外公切線,B、C是切點,則有:(1)△ABC是直角三角形且∠BAC=900(2)BC2=
2024-11-18 17:15
【摘要】三角形、全等三角形、軸對稱三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂
2024-08-08 01:22
【摘要】全等三角形的復習八年級數(shù)學第十三章全等形全等三角形性質(zhì)條件應用全等三角形對應邊相等全等三角形對應角相等全等三角形的面積相等SSSSASASAAASHL解決問題角的平分線的性質(zhì)角平分線上的一點到角的兩邊距離相等到角的兩邊的距
2024-11-19 01:04
【摘要】山亭育才中學翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見中線加倍延長構(gòu)造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2024-11-21 22:05
【摘要】一、下列各題有“病”嗎?如果有“病”,請寫出“病因”,沒有解答的,請你解答,并寫出你認為易讓別人犯錯的“陷阱”在哪兒?1:如圖1,要ΔADB∽ΔABC,那么還應增加的條件是_________.ACBD2:已知:如圖2,在□ABCD中,點E為邊CD上的一點,AE的延長線交BC的延長線于點F,請你寫出圖中的
2024-12-06 14:14
【摘要】第一章《解三角形》復習12sinsinsinabcRABC???正弦定理及其變形:其中,R是△ABC外接圓的半徑公式變形:a=_______,b=________,c=________2RsinA2RsinB2RsinCsin____,sin____,sin_
2024-08-20 16:45
【摘要】相似三角形復習(2)△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是()A∠ACP=∠BB∠APC=∠ACBCAC2=AP·ABDAC:CP=AB:BCABCP2、如圖,D、E分別是AB、AC上兩點,CD與BE相
2024-11-21 12:54
【摘要】解三角形復習主干知識梳理1.兩角和與差的正弦、余弦、正切公式(1)sin(α±β)=sinαcosβ±cosαsinβ.(2)cos(α±β)=cosαcosβ?sinαsinβ.(3)t
2024-08-20 16:02
【摘要】三角形全等(復習)全等三角形(1)兩個能夠完全重合的三角形叫全等三角形,(2)全等三角形的對應角相等,對應邊相等。(3)判定兩個三角形全等的公理或定理:①一般三角形有SSS、SAS、ASA、AAS②千萬不要將SSA條件作為SAS條件來用。知識點三角形全等的證題思
2024-11-19 02:32
【摘要】4cm2cm拼成的平行四邊形三角形底/cm高/cm面積/cm2底/cm高/cm面積/cm2428424拼成的平行四邊形三角形底/cm高/cm面積/cm2底/cm高/cm面積/cm24144124cm1cm拼成的平行四邊形三角形
2024-08-09 23:38
【摘要】相似三角形與全等三角形的綜合復習友情提示:請根據(jù)課本相關內(nèi)容,快速解決下列問題,8分鐘后交流展示你的成果?!疚曳此?,我梳理】(一)相似三角形1.定義:各角對應________,各邊對應成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角
【摘要】人教新課標四年級數(shù)學下冊本節(jié)課我們主要來學習三角形的分類,同學們要知道分類的方法以及各類三角形的特點。各種各樣的三角形“神舟”三角形郵票銳角銳角三角形:三個角都是銳角的三角形。直角直角三角形:有一個角是直角的三角形。鈍角鈍角三角形:有一個角是鈍角的三角形。“流動紅旗”有
2024-12-04 04:21
【摘要】三角形定義、有關概念、邊、角、外角主要線段三角形的角平分線三角形的中線三角形的高分類按邊分不等邊三角形等腰三角形底邊和腰不相等的等腰三角形等邊三角形按角分直角三角形斜三角形銳角三角形鈍角三角形性質(zhì)(一般三角形)邊的關系三角形兩邊的和大
【摘要】如圖,在等腰三角形ABC中,AB=AC.(1)根據(jù)等腰三角形的性質(zhì),能得出什么結(jié)論?BACD(2)請你添加一個條件,使得△ABC成為等邊三角形.(3)作底邊BC的中線AD,你又能得出什么結(jié)論?并請你說明理由.(4)如果AC=5,BC=6,求△ABC的面積.ABCD在直角△ABC中,
2024-11-22 22:20
【摘要】三角形全等的條件(復習)全等三角形概念及性質(zhì):1:什么是全等三角形?一個三角形經(jīng)過哪些變化可以得到它的全等形?2:全等三角形有哪些性質(zhì)?能夠完全重合的兩個三角形叫做全等三角形。一個三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形。(1):全等三角形的對應邊相等、對應角相等。(2):全等三角形的周長相等、面積相等。(3)
2024-08-02 00:05