【正文】
設(shè)計(jì),利用支持向量機(jī)方法處理實(shí)驗(yàn)數(shù)據(jù),得到了控制收率的優(yōu)化區(qū)間。廢鋁料經(jīng)過與硫酸氫銨反應(yīng),利用重結(jié)晶技術(shù),實(shí)現(xiàn)了硫酸鋁銨的純化。通過這些新型納米結(jié)構(gòu)的合成,發(fā)展了一條簡單有效的制備金屬氧化物核殼及空心球納米結(jié)構(gòu)的途徑,并為新的合成方法學(xué)的建立奠定了基礎(chǔ)。通過SEM,TEM,XRD,BET和PL等手段對產(chǎn)物的結(jié)構(gòu)和形貌進(jìn)行了表征。初步研究表明其在室溫條件下顯示出較強(qiáng)的對剛果紅染料的吸附性能。核殼結(jié)構(gòu)的形成可歸因?yàn)樗嵝詶l件下表面晶核溶解再沉淀的過程,不同反應(yīng)時間產(chǎn)物的透射電鏡闡述了這一機(jī)制。2. 利用檸檬酸根可以和很多金屬離子絡(luò)合而控制水解速率及產(chǎn)物結(jié)晶方向的特點(diǎn),在醇水混合溶劑作用下合成出納米AlOOH的核殼結(jié)構(gòu)。通過煅燒得到了表面具有納米孔的CuO納米帶。表面活性劑的加入量是反應(yīng)中最重要的影響因素,它影響乳液中水核的存在形狀,最終影響產(chǎn)物的形貌。本論文總結(jié)了納米材料的結(jié)構(gòu)、制備、形成機(jī)理和性質(zhì)等方面的進(jìn)展,把液相合成方法拓展到新穎、特殊結(jié)構(gòu)的設(shè)計(jì)合成與生長,在研究形成機(jī)制及所獲得新型納米結(jié)構(gòu)的物性等方面進(jìn)行了有益的探索;并在納米氧化鋁粉體、薄膜的廉價制備以及所設(shè)計(jì)路線工業(yè)化生產(chǎn)的可能性方面進(jìn)行了大膽的嘗試。SHANGHAI UNIVERSITYDOCTORAL DISSERTATION題目AlOOH核殼、空心球的控制合成與組裝及Al2O3納米粉體、薄膜的廉價制備摘 要納米材料因?yàn)樗鼈兯哂械莫?dú)特的磁學(xué)、電學(xué)、光學(xué)性質(zhì),一直是科學(xué)家研究的熱點(diǎn)。目前研究的難點(diǎn)是如何合理的控制材料的定向生長,進(jìn)而實(shí)現(xiàn)對其尺寸、維度、組成、晶體結(jié)構(gòu)乃至物性的調(diào)控,深入研究結(jié)構(gòu)與物性的關(guān)聯(lián)、并最終實(shí)現(xiàn)按照人們的意愿設(shè)計(jì)合成功能材料。論文中取得了一批創(chuàng)新性成果,主要內(nèi)容概括如下:1. 建立了納米Al2O3空心球的乳液界面控制合成新技術(shù),通過對實(shí)驗(yàn)過程中影響空心球形成的各種因素進(jìn)行考察,闡述了其形成機(jī)理。使之形成帶狀水核,成功合成了竹葉狀Cu(OH)2單晶。并對其帶狀結(jié)構(gòu)的光學(xué)性質(zhì)進(jìn)行了初步研究,為進(jìn)一步探索該類獨(dú)特結(jié)構(gòu)的優(yōu)異物理化學(xué)性質(zhì)奠定了堅(jiān)實(shí)的基礎(chǔ)。高倍透射電鏡照片顯示:其二級結(jié)構(gòu)是由納米薄片以及其卷曲而成的納米管組成。由于其具有大的比表面積、均一的孔徑分布,在吸附與分離、催化等領(lǐng)域?qū)⒄故玖己玫膽?yīng)用前景。3. 發(fā)展了溶劑熱法,選擇丙酮水作混合溶劑,調(diào)控合成了AlOOH的空心球。深入研究了實(shí)驗(yàn)參數(shù)對產(chǎn)物形貌的影響,探討了AlOOH的三維結(jié)構(gòu)的形貌與發(fā)光性能之間的關(guān)系。4. 建立了以廢鋁料為原料制備高純度納米氧化鋁的新流程。硫酸鋁銨與碳酸氫銨等反應(yīng)得到了碳酸鋁銨,%粒徑分布集中在49nm的aAl2O3。本流程既處理了廢料,又為納米氧化鋁的工業(yè)化生產(chǎn)找到了一條廉價的工藝路線。深入研究了影響薄膜開裂的各種影響因素(例如支撐體的孔徑大小,氧化鋁含量,干燥控制劑的選擇和用量,浸漬時間,干燥和煅燒條件等),制得了表面無開裂、無針孔缺陷的不對稱膜。關(guān)鍵詞:氧化鋁,勃姆石,乳液合成,溶劑熱合成,一維納米結(jié)構(gòu)ABSTRACTNanomaterials have drawn continuous research attention because of their unique electrical, optical and magnetic properties different from that of bulk materials. But the main challenge in this area is how to precisely control the sizes, dimensionalities, positions and crystal structures in nanoscale, which may serve as a powerful tool for the tailoring of physical/chemical properties of materials in a controllable way. In this dissertation, based on the prehensive and thorough investigation of a lot of literatures, I gave a concise review on the structures, properties, applications and preparation methods. Following that, solutionbased routes were developed to realize the chemical synthesis of special and novel nanomaterials. Furthermore, valuable explorations have been carried out on the research on their growth mechanism and properties and attempts have been made on lowcost preparation of alumina nanopowders and the possibilities of large scale production. The research conclusions provide some original and innovative results, and the main points are summarized as follows:1. A new and feasible emulsion route was established to control the synthesis of Al2O3 hollow spheres. The reaction was acplished at the organic/aqueous biphasic boundary. Based on a series of parative experiments under different reaction conditions, the probable formation mechanism of Al2O3 hollow spheres was proposed to be emulsionmorphology controlled growth process. The Al2O3 hollow spheres could be tailored by using different concentration of surfactant. In addition, Cu(OH)2 bambooleaflike single crystals were successfully synthesized by increasing the surfactant amounts to . It could be converted to a porous structure (CuO) after removing the Span80 molecules via calcination. The optical properties of these CuO nanostructures were studied with UVvis spectra measurements and found to exhibit blue shifts in UVvis spectra and possess larger band gaps pared with those of bulk crystals.2. The AlOOH core/shell microspheres were successfully synthesized in largescale via a onestep templatefree solvothermal route. Most shells of the spheres posed of loosely stacked nanoplatelets and nanotubes as second order structure. Based on the evolution process of the products at various stages of the reaction, a possible mechanism was proposed to the formation of coreshell structures, which involved a surface reactiondissolutionrecrystallization process. Citrtate anion, as a coordination agent and shape modifier, plays a key role in determining the morphology of the final products. The asprepared AlOOH coreshell superstructures are powerful in the removal of Congo red pollutant from waste water. Taking into account the high BET surface area and excellent porous properties, this novel structure is expected to be useful in many other applications, such as catalysts, sorbents, ceramics, and optical nanodevices. 3. A solvothermal method using the mixed solvent of water and acetone was developed to prepare AlOOH hollow spheres. The structure and morphology of the products were characterized by Xray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), BrunauerEmmettTeller (B