【摘要】1初中數(shù)學教學設計一元二次方程根的判別式一、教學內(nèi)容分析“一元二次方程的根的判別式”一節(jié),在《華師大版》的新教材中是作為閱讀材料的。從定理的推導到應用都比較簡單。但是它在整個中學數(shù)學中占有重要的地位,既可以根據(jù)它來判斷一元二次方程的根的情況,又可以為今后研究不等式,二次三項式,二次函數(shù),二次曲線等奠定基礎,并且用它可以解決
2024-12-06 17:28
【摘要】14.2一元二次方程根的判別式導學案南京市濱江中學李福一、學習目標:1.會根據(jù)acb42?的值的符號來判定一元二次方程根的情況.2.經(jīng)歷探求一元二次方程根的情況與系數(shù)關系的過程,培養(yǎng)分析歸納的能力.二、學習重點:一元二次方程根的判別式.學習難點:一元二次方程根的判別式的運用.三、學習過程:(一
2024-12-04 02:09
【摘要】一元二次方程根的判別式?一元二次方程的根有三種情況:①有兩個不相等的實數(shù)根;②有兩個相等的實數(shù)根;③沒有實數(shù)根.而根的情況,由的值來確定.因此叫做一元二次方程的根的判別式.?△0方程有兩個不相等的實根.?△=0方程有兩個相等的
2024-11-18 16:57
【摘要】第二章第四課時:一元二次方程根的判別式?要點、考點聚焦?課前熱身?典型例題解析?課時訓練?要點、考點聚焦ax2+bx+c=0(a≠0)根的情況:(1)當Δ>0時,方程有兩個不相等的實數(shù)根;(2)當Δ=0時,方程有兩個相等的實數(shù)根;(3)當Δ<0時,方程無實數(shù)根.,也可以
2024-11-18 16:10
【摘要】一元二次方程的根與系數(shù)的關系根的判別式課前參與預習內(nèi)容:課本P16-17復習回顧1、關于x的一元二次方程的一般形式:2、)0(02????acbxax的根的判別式表示為當時,方程有兩個不相等的實
2024-12-21 10:55
【摘要】教學設計:課題:一元二次方程根的判別式云山學校中學部李勇〖教材分析〗1、地位和作用本節(jié)內(nèi)容是在一元二次方程的解法的基礎上進行教學的,是對公式法的完善與發(fā)展。利用根的判別式可以不解方程而直接判斷一元二次方程的根的情況。由于前面已經(jīng)學習了求根公式,所以教材開門見山,首先直接對求根公式進
2024-12-06 19:01
【摘要】一元二次方程判別式課件制作主講余小芳一元二次方程判別式?一復習提問:?1、一元二次方程的標準式是什么??2、一元二次方程的求根公式是什么??想一想:b-4ac的符號與ax+bx+c=0會有關系嗎??做一做:用求根公式法解下列方程?(1)x-x-2=0(2)x-6x+9
2024-08-31 00:34
【摘要】專題課堂(三)一元二次方程根的判別式及根與系數(shù)關系的應用第22章一元二次方程一、根的判別式的應用類型:(1)通過求b2-4ac的值,判斷一元二次方程的根的情況;(2)根據(jù)方程根的情況求出字母系數(shù)的取值范圍.【例1】已知a,b,c是△ABC的三邊長,并且關于x的一元二次方程(a+c)x
2024-11-22 05:43
【摘要】一元二次方程根的判別式姓名◆課前預習1.一元二次方程ax2+bx+c=0(a≠0)的根的情況可用b2-4ac來判定,b2-4ac叫做________,通常用符號“△”為表示.(1)b2-4ac0方程_________;(2)b2-4ac=0方程_________;(3)b2-4ac0方程_________.2.使用根的判別式之前應先把方程化為一元二次
2025-07-04 19:26
2024-11-24 03:31
【摘要】課題:一元二次方程的根的判別式平方根的性質(zhì)打開你的搜索引擎,搜尋:用公式法求下列方程的根:.01)3;0141)2;022)1222?????????xxxxxx用公式法解一元二次方程的一般步驟:1)把方程化為一般形式2)確定的值cba,
2024-11-24 16:21
2024-11-21 21:33
【摘要】第1頁共3頁九年級數(shù)學一元二次方程根的判別式及根與系數(shù)關系探究(一元二次方程)基礎練習試卷簡介:全卷共4個選擇題,9個填空題,1個證明題,6個解答題,分值120,測試時間60分鐘。本套試卷在課本的基礎上,對題目稍做一定難度的拔高,主要考察了學生對元二次方程根的判別式及根與系數(shù)的關系的靈活運用。各個題目難度類似
2024-08-23 17:40
【摘要】17.3(1)一元二次方程根的判別式(1)教學目標[1、經(jīng)歷一元二次方程的根的判別式的概括過程,理解根的判別式.2、能不解方程,而根據(jù)根的判別式判斷一元二次方程的根的情況.3、通過一元二次方程的根的判別式的概括過程培養(yǎng)從具體到抽象的能力.教學重點及難點1、教學重點:會用判別式判定一元二次方程根
2024-12-21 00:46
【摘要】一元二次方程的根的判別式??????2221532022542032310xxyyxx????????利用公式法解下列方程對于一元二次方程你能談論一下它的根的情況嗎?在什么情況下,一元二次方程有解?有什么樣的解?什么情況下一元二次方程無解?2
2024-12-09 23:37