【正文】
anization through Square Dance 23 The following Kinteraction Model in the Ramp。 Pictograms of selected formation arrangements (callerab 1980) 25 Production of new ideas / patents (at a given time) ??1iii na ??“new ideas” produced per unit of time ? % ExplicitK (patentable) TacitK (kept alone) ① in isolation (person i) Patents (public information) iKsize of 26 ② in meeting of two persons (person i and person j) ??1? % ExplicitK TacitK shared by i and j Common Knowledge 2121)()()(2????????? djicijdijij nnnaiK jKwhere the weight on the monK in the Kproduction ( ) ?10 ?? ?Differential K of person j Differential K of person i Patents (public inf.) 27 indexδ: index for meeting / not meeting at each time t : ?)(tii?1 : person i produces new ideas alone 0 : person i meets somebody 1)()( ?? tt jiij ???)(tij?1 : person i wants to meet person j 0 : otherwise ?)(tji?for the meeting by i and j to be realized Focusing on person i と person j ( ) ji?1 : person j wants to meet person i 0 : otherwise 28 At each time t, how does person i determine },2,1:)({ Njtij ???? The objective function = the ine from the sales of new patents (the number of new patents belonging to i) ????????????????? ?? ijijijiiiitattatt2)()()()()( ???Njtij ,2,1:)( ??? patent price equally shared by i and j ???Njij t11)(?subject to: Choose the person k and set 1)( ?tik???? )()(m a x tty i29 How to break the tie? : for example Njtij ,2,1:)( ???)(m a x ty iperson k person l are equally the best Choose and so as to )(tik? )(til?)(m a x ty i 1)()( ?? tt ilik ??subject to the growth rate of ine for i In the tie breaking, a fractional solution is permitted: for example : and 21)( ?tik? 21)( ?til?30 When does the meeting by i and j take place? dijn cijn djinijdijdij nnm ?ijcijcij nnm ?djicijdijij nnnn ???iK jKjidjidji nnm ?djiidjidjidijdijijdjicijdijdjicijdijijmnmmmmnmmmnnna????????????????????1)()1()()()()()()()(2212121212121????????????the share of each ponent : for : ji?31 Hence, for : ji?djidjidjidijdijiijmmmmmna?????????1)()1()(2 2121 ????ddjidij mmm ??when (symmetric Kstructure) )(1)()21(2 1ddddiijmgmmmna??????? ???the normalized Kproduction function : 32 10 . 80 . 60 . 40 . 200 . 2 0 . 40 . 3 0 . 50 .1dmIJ?JmBliss point The normalized Kproduction function and the Bliss Point BmB(symmetric case: ) ddjidij mmm ??when i and j meeting ddddiijmmmmgna???????1)()21()(21 ???isolation share of differentialK ?????21Bmiiina0,1??as 021 ??as(incrementaltype) (inventiontype) Kproductivity (normalized) 33 10 . 80 . 60 . 40 . 200 . 2 0 . 40 . 3 0 . 50 .1equilibrium dynamics under the symmetricK the 2person case dmIBJ?Jm BmBlis