freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

小學(xué)數(shù)學(xué)概念教學(xué)心得體會(huì)及擴(kuò)展資料-文庫吧資料

2024-11-16 22:07本頁面
  

【正文】 樹就能算出橫截面面積的辦法來呢?大家再討論一下。為此,教師在教學(xué)中應(yīng)當(dāng)根據(jù)教材內(nèi)容和學(xué)生實(shí)際,在掌握小學(xué)數(shù)學(xué)教材邏輯系統(tǒng)的基礎(chǔ)上,有意識(shí)地深化和發(fā)展學(xué)生的數(shù)學(xué)概念。教師引導(dǎo)學(xué)生運(yùn)用概念去解決數(shù)學(xué)問題,是培養(yǎng)學(xué)生思維,發(fā)展各種數(shù)學(xué)能力的過程。學(xué)習(xí)了小數(shù)的性質(zhì)后,就可以讓學(xué)生把小數(shù)按要求進(jìn)行化簡(jiǎn)或改寫;學(xué)習(xí)了等腰三角形,可設(shè)計(jì)一組操作題;畫一個(gè)等腰三角形;畫一個(gè)頂角60度的等腰三角形;畫一個(gè)腰長(zhǎng)為2厘米的等腰直角三角形。(2)運(yùn)用于計(jì)算、作圖等例如,如學(xué)了乘法的運(yùn)算定律后,就可以讓學(xué)生簡(jiǎn)便計(jì)算下面各題。從具體到抽象又回到具體,符合小學(xué)生的認(rèn)識(shí)規(guī)律,使學(xué)生更準(zhǔn)確把握概念的內(nèi)涵和外延。理解概念的目的在于運(yùn)用,運(yùn)用的途徑有:(1)自舉實(shí)例這是要求學(xué)生把已經(jīng)初步獲得的概念簡(jiǎn)單運(yùn)用于實(shí)際,通過實(shí)例來說明概念,加深對(duì)概念的理解。學(xué)習(xí)了比之后,可以用列表法設(shè)計(jì)比與除法、分?jǐn)?shù)之間的聯(lián)系的習(xí)題,從中明確“除法是一種運(yùn)算,分?jǐn)?shù)是一個(gè)數(shù),比是一個(gè)關(guān)系式”的區(qū)別。其中只有第(1)、(2)題,被除數(shù)、除數(shù)和商都是自然數(shù),而且沒有余數(shù),這兩題既可以說被除數(shù)被除數(shù)除盡,又能說被除數(shù)被除數(shù)整除。=30(6)247。7=42(4)8247。2=4(2)48247。對(duì)這類概念,學(xué)生常常容易混淆,必須及時(shí)把它們加以比較,以避免互相干擾。(4)對(duì)近似的概念及時(shí)加以對(duì)比辨析在小學(xué)數(shù)學(xué)中,有些概念其含義接近,但本質(zhì)屬性又有區(qū)別。旨在從變式中把握概念的本質(zhì)屬性,排除非本質(zhì)屬性的干擾。例如,有的學(xué)生誤認(rèn)為,只有水平放置的長(zhǎng)方形才叫長(zhǎng)方形,如果斜著放就辨認(rèn)不出來。再如,小數(shù)的性質(zhì)揭示后,、哪些“0”可以去掉,哪些“0”不能去掉?從而加深學(xué)生對(duì)小數(shù)性質(zhì)的理解。在概念揭示后往往要針對(duì)教學(xué)要求組織學(xué)生進(jìn)行一些練習(xí),如教完三角形按角分類后,可以出示:一個(gè)三角形不是直角三角形,并且有兩個(gè)角是銳角,這個(gè)三角形一定是銳角三角形。(2)辨析概念的肯定例證和否定例證學(xué)生能背誦概念并不等于真正理解概念,還要通過實(shí)例突出概念的主要特征,幫助他們加深對(duì)概念的理解。這樣把實(shí)際操作的過程和所畫的三角形高的圖形與定義所敘述的內(nèi)容對(duì)照,使學(xué)生準(zhǔn)確地理解三角形的高的定義。為了讓學(xué)生理解三角形的高,除了讓學(xué)生理解字面意思外,往往還需要學(xué)生通過實(shí)際操作,體會(huì)畫“高”的全過程。三角形的高的定義:“從三角形的一個(gè)頂點(diǎn)到它的對(duì)邊作一條垂線,頂點(diǎn)和垂足之間的線段叫做三角形的高,這條邊叫做三角形的底。再如教學(xué)“整除”概念之后應(yīng)幫助學(xué)生從以下三方面進(jìn)行判斷,一是判斷是否具有“整除”關(guān)系的兩個(gè)數(shù)都必須是自然數(shù);二是這兩個(gè)數(shù)相除所得的商是整數(shù);三是沒有余數(shù)。(2)概念的理解要注重正反例證的辨析,突出概念的本質(zhì)屬性概念的理解是概念教學(xué)的中心環(huán)節(jié),教師要采取一切手段幫助學(xué)生逐步理解概念的內(nèi)涵和外延,以便讓學(xué)生在理解的基礎(chǔ)上掌握概念。例如直角三角形的本質(zhì)特征是“有一個(gè)角是直角的三角形”,至于這個(gè)直角是三角形中的哪一個(gè)角,直角三角形的大小、形狀,則是非本質(zhì)的`。有的教師讓學(xué)生觀察教室相鄰兩堵墻所夾的角,那是兩面角,對(duì)于小學(xué)教學(xué)要求來說,就不確切了。但概念引入時(shí)所提供的材料要注意三點(diǎn):一是所選材料要確切。概念教學(xué)一開始,應(yīng)根據(jù)教學(xué)內(nèi)容運(yùn)用直觀手段向?qū)W生提供豐富而典型的感性材料,如采用實(shí)物、模型、掛圖,或進(jìn)行演示,引導(dǎo)學(xué)生觀察,并結(jié)合實(shí)驗(yàn),讓學(xué)生自己動(dòng)手操作,以便讓學(xué)生接觸有關(guān)的對(duì)象,豐富自己的感性認(rèn)識(shí)。(1)概念的引入要注重提供豐富而典型的感性材料在概念引入的過程中,要注意使學(xué)生建立起清晰的表象。遵循小學(xué)生學(xué)習(xí)概念的特點(diǎn),組織合理有序的教學(xué)過程盡管小學(xué)生獲取概念有概念形成和概念同化這兩種基本形式,各類概念的形成又有各自的特點(diǎn),但不管以何種方式獲得概念,一般都會(huì)遵循從“引入一理解一鞏固一深化”這樣的概念形成路徑。但是,運(yùn)用直觀并不是目的,它只是引起學(xué)生積極思維的一種手段。同樣常見數(shù)量關(guān)系中的單價(jià)、總價(jià)與數(shù)量之間的關(guān)系;路程、速度與時(shí)間的關(guān)系,工作量、工作效率與工作時(shí)間之間的關(guān)系等,都應(yīng)結(jié)合學(xué)生的生活經(jīng)驗(yàn),通過具體的題目將其抽象出來,然后又利用這些關(guān)系來分析解決問題。例如乘法交換律的教學(xué),往往讓學(xué)生先解答這樣的習(xí)題:一種鋼筆,每盒10支,每支3元,買2盒鋼筆要多少元?學(xué)生在實(shí)際解答中發(fā)現(xiàn),這道題可以有兩種解答思路,一種是先求出“每盒多少元”,再求出“2盒要多少元”,算式是(310)2=60元;另一種是先求出“一共有多少支鋼筆”,再求出“2盒多少元”,算式是3(210)=60元。通過實(shí)物演示,使學(xué)生建立表象,從而解決了數(shù)學(xué)知識(shí)的抽象性與兒童思維的形象性的矛盾。這樣,引導(dǎo)學(xué)生把大量的感性材料,加以分析、綜合、抽象、概括,拋棄事物的非本質(zhì)屬性(如圓的大小、測(cè)量時(shí)用的單位等),抓住事物的本質(zhì)特征(圓的周長(zhǎng)總是直徑的3倍多一點(diǎn)),形成了概念。這時(shí)再揭示:這個(gè)倍數(shù)是個(gè)固定的數(shù),數(shù)學(xué)上叫做圓周率。全班同學(xué)做完后,要求每個(gè)同學(xué)匯報(bào)自己計(jì)算的結(jié)果。例如“圓周率”這一概念非常抽象,有的教師在課前,布置每個(gè)學(xué)生用硬紙制做一個(gè)圓,半徑自定。(1)通過演示、操作進(jìn)行具體與抽象的轉(zhuǎn)化教學(xué)中,對(duì)于一些相對(duì)抽象的內(nèi)容,盡可能地利用恰當(dāng)?shù)难菔净虿僮魇蛊滢D(zhuǎn)化為具體內(nèi)容,然后在此基礎(chǔ)上抽象出概念的本質(zhì)屬性。他們形成數(shù)學(xué)概念,一般都要求有相應(yīng)的感性經(jīng)驗(yàn)為基礎(chǔ),而且要經(jīng)歷一番把感性材料在腦子里來回往復(fù),從模糊到逐漸分明,從許多有一定聯(lián)系的材料中,通過自己操作、思維活動(dòng)逐步建立起事物一般的表象,分出事物的主要的本質(zhì)特征或?qū)傩?,這是形成概念的基礎(chǔ)。對(duì)于不容易理解的概念就暫不給出定義或者采用分階段逐步滲透的辦法來解決。從而處理好掌握概念的階段性與連續(xù)性的關(guān)系。學(xué)生對(duì)數(shù)學(xué)概念的認(rèn)識(shí),也需要隨著數(shù)學(xué)學(xué)習(xí)的程度的提高,由淺入深,逐步深化。因此,在數(shù)學(xué)概念教學(xué)中,要搞清概念之間的順序,了解概念之間的內(nèi)在聯(lián)系。在引入分?jǐn)?shù)以后,“倍”的概念發(fā)展了,發(fā)展后的“倍”的概念,就包含了原來的“倍”的概念。(3)當(dāng)概念發(fā)展后,教師不但指出原來概念與發(fā)展后概念的聯(lián)系與區(qū)別,以便學(xué)生掌握,而且還應(yīng)引導(dǎo)學(xué)生對(duì)有關(guān)概念進(jìn)行研究,注意其發(fā)展變化。如:有一位學(xué)生在認(rèn)識(shí)了長(zhǎng)方體之后,認(rèn)為課本中的任何一張紙的形狀也是長(zhǎng)方體的。同時(shí)注意與將來的嚴(yán)格定義不矛盾。在把握階段性目標(biāo)時(shí),應(yīng)注意以下幾點(diǎn):(1)在每一個(gè)教學(xué)階段,概念都應(yīng)該是確定的,這樣才不致于造成概念混亂的現(xiàn)象。哪些是看不見的,圖中是怎樣來表示的。再從長(zhǎng)方體的實(shí)例中抽象出長(zhǎng)方體的幾何圖形。教學(xué)長(zhǎng)方體的認(rèn)識(shí)時(shí),先讓學(xué)生收集長(zhǎng)方體的物體,教師先說明什么是長(zhǎng)方體的面、棱和頂點(diǎn),讓學(xué)生數(shù)一數(shù)面、棱和頂點(diǎn)各自的數(shù)目,量一量棱的長(zhǎng)度,算一算各個(gè)面的大小,比較上下、左右、前后棱和面的關(guān)系和區(qū)別。第二階段是在較高年級(jí)。但這一階段的教學(xué)要求只要學(xué)生知道長(zhǎng)方體和立方體的名稱,能夠辨認(rèn)和區(qū)分這些形狀即可。然后,通過操作、觀察,了解長(zhǎng)方體和立方體各有幾個(gè)面,每個(gè)面是什么形狀,進(jìn)一步加深對(duì)長(zhǎng)方體和立方體的感性認(rèn)識(shí)。在低年級(jí),先出現(xiàn)長(zhǎng)方體和立方體的初步認(rèn)識(shí),通過讓學(xué)生觀察一些實(shí)物及實(shí)物圖,如裝墨水瓶的紙盒、魔方等。這樣三個(gè)層次不是一蹴而就的,要展現(xiàn)知識(shí)的發(fā)展過程,引導(dǎo)學(xué)生在知識(shí)的發(fā)生發(fā)展過程中去理解分?jǐn)?shù)。這是感性的飛躍。從具體事物中抽象出來?!蓖ㄟ^大量感性直觀的認(rèn)識(shí),結(jié)合具體事物描述什么樣的是分?jǐn)?shù),初步理解分?jǐn)?shù)是平均分得到的,理解誰是誰的幾分之幾。例如,對(duì)分?jǐn)?shù)意義理解的三次飛躍。不同的概念具體要求會(huì)有所不同,即使同一概念在不同的學(xué)習(xí)階段要求也有差別。為了加強(qiáng)概念教學(xué),教師必須認(rèn)真鉆研教材,掌握小學(xué)數(shù)學(xué)概念的系統(tǒng),摸清概念發(fā)展的脈絡(luò)。因此,數(shù)學(xué)概念的系統(tǒng)性和發(fā)展性與概念教學(xué)的階段性成了教學(xué)中需要解決的一對(duì)矛盾。開始只是認(rèn)識(shí),以后逐漸認(rèn)識(shí)了零,隨著學(xué)生年齡的增大,又引進(jìn)了分?jǐn)?shù)(小數(shù)),以后又逐漸引進(jìn)正、負(fù)數(shù),有理數(shù)和無理數(shù),把數(shù)擴(kuò)充到實(shí)數(shù)、復(fù)數(shù)的范圍等。但是,在小學(xué)階段的概念教學(xué),考慮到小學(xué)生的接受能力,往往是分階段進(jìn)行的。在一定條件下,一個(gè)概念的內(nèi)涵和外延是固定不變的,這是概念的確定性。五、小學(xué)數(shù)學(xué)概念教學(xué)中應(yīng)注意的問題把握概念教學(xué)的目標(biāo),處理好概念教學(xué)的發(fā)展性與階段性之間的矛盾。例5(1)列舉你所見到過的圓柱形物體。(3)按指定的條件從概念的外延中選擇事例。這句話對(duì)嗎?請(qǐng)說明理由?(1)舉例(2)辨認(rèn)肯定例證或否定例證。例4(1是互質(zhì)數(shù)。③根據(jù)定義推理。(1)概念內(nèi)涵的應(yīng)用①復(fù)述概念的定義或根據(jù)定義填空。重視應(yīng)用在概念教學(xué)中,既要引導(dǎo)學(xué)生由具體到抽象,形成概念,又要讓學(xué)生由抽象到具體,運(yùn)用概念,學(xué)生是否牢固地掌握了某個(gè)概念,不僅在于能否說出這個(gè)概念的名稱和背誦概念的定義,而且還在于能否正確靈活地應(yīng)用,通過應(yīng)用可以加深理解,增強(qiáng)記憶,提高數(shù)學(xué)的應(yīng)用意識(shí)。復(fù)習(xí)的方式可以是對(duì)個(gè)別概念進(jìn)行復(fù)述,也可以通過解決問題去復(fù)習(xí)概念,而更多地則是在概念體系中去復(fù)習(xí)概念。教學(xué)中應(yīng)注意如下幾個(gè)方面。例如,講授“等腰三角形”概念,教師除了用常見的圖形展示外,還應(yīng)采用變式圖形去強(qiáng)化這一概念,因?yàn)槔玫妊切蔚男再|(zhì)去解題時(shí),所遇見的圖形往往是后面幾種情形。因此,在教學(xué)中應(yīng)注意運(yùn)用變式,從不同角度、不同方面去反映和刻畫概念的本質(zhì)屬性。合理運(yùn)用變式。凡具有概念所反映的本質(zhì)屬性的對(duì)象必屬于該概念的外延集,而反例的構(gòu)造,就是讓學(xué)生找出不屬于概念外延集的對(duì)象,顯然,這是概念教學(xué)中的一種重要手段。概念教學(xué)中,除了從正面去揭示概念的內(nèi)涵外,還應(yīng)考慮運(yùn)用適當(dāng)?shù)姆蠢ネ怀龈拍畹谋举|(zhì)屬性,尤其是讓學(xué)生通過對(duì)比正例與反例的差異,對(duì)自己出現(xiàn)的錯(cuò)誤進(jìn)行反思,更利于強(qiáng)化學(xué)生對(duì)概念本質(zhì)屬性的理解。用對(duì)比或類比講述新概念,一定要突出新、舊概念的差異,明確新概念的內(nèi)涵,防止舊概念對(duì)學(xué)習(xí)新概念產(chǎn)生的負(fù)遷移作用的影響。對(duì)比概念,可以找出概念間的差異,類比概念,可以發(fā)現(xiàn)概念間的相同或相似之處。為此,教學(xué)中可采用一些具有針對(duì)性的方法。這種方法生動(dòng)直觀,體現(xiàn)了運(yùn)動(dòng)變化的觀點(diǎn)和思想,同時(shí),引入的過程又自然地、無可辯駁地闡明了這一概念的客觀存在性。數(shù)學(xué)中有些概念是用發(fā)生式定義的,在進(jìn)行這類概念的教學(xué)時(shí),可以采用演示活動(dòng)的直觀教具或演示畫圖說明的方法去揭示事物的發(fā)生過程。一般來說,用“問題”引入概念的途徑有兩條:①從現(xiàn)實(shí)生活中的問題引入數(shù)學(xué)概念;②從數(shù)學(xué)問題或理論本身的發(fā)展需要引入概念。它們各有幾個(gè)約數(shù)?你能給出一個(gè)分類標(biāo)準(zhǔn),把這些數(shù)進(jìn)行分類嗎?你能找出多種分類方法嗎?你找出的所有分類方法中,哪一種分類方法是最新的分類方法?”以“問題”的形式引入新概念。又如,學(xué)習(xí)“質(zhì)因數(shù)”可以從“因數(shù)”和“質(zhì)數(shù)”這兩個(gè)概念引入。例如,學(xué)習(xí)“乘法意義”時(shí),可以從“加法意義”來引入。以新、舊概念之間的關(guān)系引入新概念。通過比較可以發(fā)現(xiàn),它們的共同屬性是:可以抽象地看成兩條直線;兩條直線在同一平面內(nèi);彼此間距離處處相等;兩條直線沒有公共點(diǎn)等,最后抽象出本質(zhì)屬性,得到平行線的定義。鐵軌有屬性:是鐵制的、可以看成是兩條直線、在同一個(gè)平面內(nèi)、兩條邊可以無限延長(zhǎng)、永不相交等。用學(xué)生在日常生活中所接觸到的事物或教材中的實(shí)際問題以及模型、圖形、圖表等作為感性材料,引導(dǎo)學(xué)生通過觀察、分析、比較、歸納和概括去獲取概念。一般來說,數(shù)學(xué)概念的引入可以采用如下幾種方法。引出新概念的過程,是揭示概念的發(fā)生和形成過程,而各個(gè)數(shù)學(xué)概念的發(fā)生形成過程又不盡相同,有的是現(xiàn)實(shí)模型的直接反映;有的是在已有概念的基礎(chǔ)上經(jīng)過一次或多次抽象后得到的;有的是從數(shù)學(xué)理論發(fā)展的需要中產(chǎn)生的;有的是為解決實(shí)際問題的需要而產(chǎn)生的;有的是將思維對(duì)象理想化,經(jīng)過推理而得;有的則是從理論上的存在性或從數(shù)學(xué)對(duì)象的結(jié)構(gòu)中構(gòu)造產(chǎn)生的。(一)數(shù)學(xué)概念的引入數(shù)學(xué)概念的引入,是數(shù)學(xué)概念教學(xué)的第一個(gè)環(huán)節(jié),也是十分重要的環(huán)節(jié)。概念的運(yùn)用主要表現(xiàn)在學(xué)生能在不同的具體情況下,辨認(rèn)出概念的本質(zhì)屬性,運(yùn)用概念的有關(guān)屬性進(jìn)行判斷推理。掌握概念是指要在理解概念的基礎(chǔ)上記住概念,正確區(qū)分概念的肯定例證和否定例證。從而使學(xué)生的初步邏輯思維能力逐步得到提高。x=4(6)9+x=123在概念教學(xué)過程中,為了使學(xué)生順利地獲取有關(guān)概念,常常要提供豐富的感性材料讓學(xué)生觀察,在觀察的基礎(chǔ)上通過教師的啟發(fā)引導(dǎo),對(duì)感性材料進(jìn)行比較、分析、綜合,最后再抽象概括出概念的本質(zhì)屬性。(1)56+23=79(2)23x=67(3)x247。例如,“含有未知數(shù)的等式叫做方程”,這是一個(gè)判斷。概念是思維形式之一,也是判斷和推理的起點(diǎn),所以概念教學(xué)對(duì)培養(yǎng)學(xué)生的思維能力能起重要作用。小學(xué)數(shù)學(xué)是一門概念性很強(qiáng)的學(xué)科,也就是說,任何一部分內(nèi)容的教學(xué),都離不開概念教學(xué)。又如,圓的面積公式s=πr2,要以“圓”、“半徑”、“平方”、“圓周率”等概念為基礎(chǔ)。例如,整數(shù)百以內(nèi)的筆算加法法則為:“相同數(shù)位對(duì)齊,從個(gè)位加起,個(gè)位滿十,就向十位進(jìn)一。事實(shí)證明,如果學(xué)生有了正確、清晰、完整的數(shù)學(xué)概念,就有助于掌握基礎(chǔ)知識(shí),提高運(yùn)算和解題技能。學(xué)生掌握基礎(chǔ)知識(shí)的過程,實(shí)際上就是掌握概念并運(yùn)用概念進(jìn)行判斷、推理的過程。三、小學(xué)數(shù)學(xué)概念教學(xué)的意義首先,數(shù)學(xué)概念是數(shù)學(xué)基礎(chǔ)知識(shí)的重要組成部分。因此,小學(xué)數(shù)學(xué)概念呈現(xiàn)出兩大特點(diǎn):一是數(shù)學(xué)概念的直觀性;二是數(shù)學(xué)概念的階段性。在整個(gè)小學(xué)階段,由于數(shù)學(xué)概念的抽象性與學(xué)生思維的形象性的矛盾,大部分概念沒有下嚴(yán)格的定義;而是從學(xué)生所了解的實(shí)際事例或已有的知識(shí)經(jīng)驗(yàn)出發(fā),盡可能通過直觀的具體形象,幫助學(xué)生認(rèn)識(shí)概念的本質(zhì)屬性。學(xué)生在觀察、擺拼中,認(rèn)識(shí)到圓柱體的特征是上下兩個(gè)底面是相等的圓,側(cè)面展開的形狀是長(zhǎng)方形。另一種是對(duì)于一些較難理解的概念,如果用簡(jiǎn)練、概括的定義出現(xiàn)不易被小學(xué)生理解,就改用描述式。例如,“直線”這一概念,教材是這樣描述的:拿一條直線,把它拉緊,就成了一條直線。這樣的概念將隨著兒童知識(shí)的增多和認(rèn)識(shí)的深化而日趨完善,在小學(xué)數(shù)學(xué)教材中一般用于以下兩種情況。如:“我們?cè)跀?shù)物體的時(shí)候,用來表示物體個(gè)數(shù)的5叫自然數(shù)”;“象1。用一些生動(dòng)、具體的語言對(duì)概念進(jìn)行描述,叫做描述式。如“有兩條邊相等的三角形叫等腰三角形”;“含有未知數(shù)的等式叫方程”等等。這些定義式的概念抓住了一類事物的本質(zhì)特征,揭示的是一類事物的本質(zhì)屬性。二、小學(xué)數(shù)學(xué)概念的表現(xiàn)形式在小學(xué)數(shù)學(xué)教材中的概念
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1