freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高一數(shù)學正弦定理教案-文庫吧資料

2024-11-15 07:01本頁面
  

【正文】 系與辯證統(tǒng)一.教學過程導入新課 師如右圖,固定△ABC的邊CB及∠B,使邊AC繞著頂點C轉動.師思考:∠C的大小與它的對邊AB的長度之間有怎樣的數(shù)量關系?生顯然,邊AB的長度隨著其對角∠C的大小的增大而增大.師能否用一個等式把這種關系精確地表示出來? 師在初中,我們已學過如何解直角三角形,下面就首先來探討直角三角形中,角與邊的等式關系.如右圖,在Rt△ABC中,設BC =A,AC =B,AB =C,根據(jù)銳角三角函數(shù)中正弦函數(shù)的定義,有=sinA,=sinB,又sinC=1=,,.推進新課 [合作探究]師那么對于任意的三角形,以上關系式是否仍然成立?(由學生討論、分析)生可分為銳角三角形和鈍角三角形兩種情況: 如右圖,當△ABC是銳角三角形時,設邊AB上的高是CD,根據(jù)任意角三角函數(shù)的定義,有CD=AsinB=BsinA,則,同理,.(當△ABC是鈍角三角形時,解法類似銳角三角形的情況,由學生自己完成)正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等,即.師是否可以用其他方法證明這一等式?生可以作△ABC的外接圓,在△ABC中,令BC=A,AC=B,AB=C,根據(jù)直徑所對的圓周角是直角以及同弧所對的圓周角相等,來證明這一關系.師很好!這位同學能充分利用我們以前學過的知識來解決此問題,△ABC中,已知BC=A,AC=B,AB=C,作△ABC的外接圓,O為圓心,連結BO并延長交圓于B′,設BB′= ∠BAB′=90176。并且一起研究了他的證明方法,利用它解決sinAsinBsinC了一些解三角形問題。sin105o\b===20=5sinCsin30o總結:本道例題給出了解三角形的第一類問題(已知兩角和一邊,求另外兩邊和一角,因為兩個角都是確定的的,所以只有一種情況)【課堂練習1】教材P144練習1(可以讓學生上臺板演)【隨堂檢測】見幻燈片四、課堂小結【師】:本節(jié)課的主要內(nèi)容是正弦定理,即三角形ABC中有每條邊和它所對的角的正弦值相等。三、例題解析【例1】優(yōu)化P101例1分析:直接代入正弦定理中運算即可ab=sinAsinBcsinA10180。【師】:其實大家如果聯(lián)系三角形的內(nèi)角和公式的話,其實只要有上面的任意一個條件,我們都可以解出三角形中所有的未知邊和角。對于一個比例式來說,如果我們知道其中的三項,那么就可以根據(jù)比例的運算性質得到第四項?!編煛浚航?jīng)過上面的證明,我們用兩種方法得到了正弦定理的證明,并且得到了正弦定理對于直角、銳角、鈍角三角形都是成立的?!編煛浚喝绻鰽BC是鈍角三角形呢?又怎么樣得到正弦定理的證明呢?不妨假設∠A是鈍rr角,那么同樣道理如果我們做AC垂線上的一個單位向量j,把向量j和上面那個式uuuruuuruuur子AB+BC=AC的兩邊同時做數(shù)量積運算就可以得到ruuurruuurruuur00jABcos(C90)+jBCcos(90+C)=jACcos900,化簡即可得到csinA=asinC,即acbc==,同理可以得到。哪一種運算同時涉及到向量的夾角和模呢?(板書:證法二,向量法)rrrr【生】:向量的數(shù)量積ab=abcosq【師】:先在銳角三角形中討論一下,如果把三角形的三邊看做向量的話,則容易得到三角uuuruuuruuur形的三個邊向量滿足的關系:AB+BC=AC,那么,和哪個向量做數(shù)量積呢?還有數(shù)量積公式中提到的是夾角的余弦,而我們要得是夾角的正弦,這個又怎么轉化?(啟發(fā)學生得出通過做點A的垂線根據(jù)誘導公式來得到)【生】:做A點的垂線【師】:那是那條線的垂線呢?【生】:AC的垂線rr【師】:如果我們做AC垂線上的一個單位向量j,把向量j和上面那個式子的兩邊同時做數(shù)cos(90A)cos(90+C)=cos90,化簡000即可得到csinA=asinC,即acbc==,同理可以得到?!編煛浚哼@是一種很好的證明方法,能不能用之前學過的向量來證明呢?答案是肯定的。在上面這個對稱的式子中涉及到了三角形三個角的正弦,因此我們把它稱為正弦定理,即我們今天的課題。這個實際問題說明了三角形的邊與角有緊密的聯(lián)系,邊和角甚至可以互相轉化,這節(jié)課我們就要從正弦這個側面來研究三角形邊角的關系即正弦定理。如果只提供測角儀和皮尺,你能測出埃菲爾鐵塔的高度嗎?【生】:可以先在離鐵塔一段距離的地方測出觀看鐵塔的仰角,再測出與鐵塔的水平距離,就可以利用三角函數(shù)測出高度。教學難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。3.情感目標:培養(yǎng)學生在方程思想指導下處理解三角形問題的運算能力;培養(yǎng)學生合情推理探索數(shù)學規(guī)律的數(shù)學思思想能力,通過三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。3.《優(yōu)化設計》第113~115頁.第四篇:
點擊復制文檔內(nèi)容
教學課件相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1