【摘要】因式分解課時(shí)訓(xùn)練基礎(chǔ)訓(xùn)練1.下列由左到右的變形哪些是因式分解,哪些不是(是的打“∨”,不是的打“×”):(1)(x+3)(x-3)=x2-9;();(2)x2+2x+2=(x+1)2+1;()(3)x2-x-12=(x+3)(x-4);();(4)x2+3xy
2024-12-06 12:26
【摘要】第4章因式分解單元測(cè)試班級(jí)____________學(xué)號(hào)_____________姓名_____________一、填空題:(每小題2分,共24分)1、把下列各式的公因式寫在橫線上:①yxx22255?、;②nnxx4264??=??nx232?2、填上適當(dāng)
2024-12-06 16:36
【摘要】因式分解教學(xué)目標(biāo)認(rèn)知目標(biāo):(1)理解因式分解的概念和意義(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。能力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、判斷能力和創(chuàng)新能力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維能力和綜合運(yùn)用能力。情感目標(biāo):
2024-12-15 23:44
【摘要】提取公因式法第4章因式分解第4章因式分解提取公因式學(xué)知識(shí)筑方法勤反思知識(shí)點(diǎn)一多項(xiàng)式的公因式提取公因式法學(xué)知識(shí)一般地,一個(gè)多項(xiàng)式中每一項(xiàng)都含有的相同的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的________.公因式1.多項(xiàng)式-6m3n-3m2n2+12m2n3的公因式
2025-06-18 00:03
2025-06-18 05:10
【摘要】手工課上,老師給南韓兵同學(xué)發(fā)下一張如左圖形狀的紙張,要求他在恰好不浪費(fèi)紙張的前提下剪拼成右圖形狀的長(zhǎng)方形,作為一幅精美剪紙的襯底,請(qǐng)問你能幫助南韓兵同學(xué)解決這個(gè)問題嗎?能給出數(shù)學(xué)解釋嗎?aabba(a+1)=_________(a+b)(a-b)=__________(a+1)2=__________a2-
2024-12-04 18:37
【摘要】a(a+1)=_________(a+b)(a-b)=__________(a+1)2=__________a2-b2a2+2a+1a2+aa2-b2=()()a2+2a+1=()a2+a=()()aa+1a+ba-b
2024-12-15 13:09
【摘要】本章總結(jié)提升第4章因式分解整合提升知識(shí)框架第4章因式分解本章總結(jié)提升知識(shí)框架本章總結(jié)提升因式分解概念方法因式分解互逆變形整式乘法提取公因式法ma+mb=m(a+b)平方差公式公式法完全平方公式a2+b2=(a+b)(a-b)
【摘要】第4章二元一次方程組檢測(cè)試題一、選擇題:(3*8=24)1、已知?????33yx是方程3??ykx的解,那么k的值是()A、2B、-2C、1D、-12、若方程123??yx的解是正整數(shù),則x一定是()A、偶數(shù)B、奇數(shù)C、整數(shù)D、正整數(shù)
2024-12-12 17:12
【摘要】分式綜合測(cè)試一、選擇題1.(2021黑龍江省龍東地區(qū))已知關(guān)于x的分式方程211ax???的解是非正數(shù),則a的取值范圍是()(A)1a?≤(B)12aa???≤且(C)12aa??≤且(D)1a≤
2024-12-06 16:37
【摘要】單元綜合復(fù)習(xí)(三)因式分解類型1因式分解的概念1.(2022·常德)下列各式由左到右的變形中,屬于分解因式的是()A.a(chǎn)(m+n)=am+anB.a(chǎn)2-b2-c2=(a-b)(a+b)-c2C.10x2-5
2025-06-18 12:04
2025-06-18 12:05
【摘要】用乘法公式分解因式第4章分解因式第4章因式分解第2課時(shí)用完全平方公式分解因式學(xué)知識(shí)筑方法勤反思知識(shí)點(diǎn)用完全平方公式分解因式用乘法公式分解因式學(xué)知識(shí)由完全平方公式可得:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.即兩數(shù)的__