【摘要】二次函數(shù)y=ax2+bx+c的圖象和性質(zhì)(2)1.對于任何實數(shù)h,拋物線y=(x-h)2與拋物線y=x2的相同2.將拋物線y=-2x2向左平移一個單位,再向右平移3個單位得拋物線解析式為.y=3(x-8)2最小值為.方向,大小y=-
2024-11-29 23:05
【摘要】二次函數(shù)的圖像與性質(zhì)東廈中學紀傳?!顈=ax2+bx+c(a≠0)的性質(zhì):☆、增減性及對稱性:☆3.二次函數(shù)解析式的求法:一.拋物線y=ax2+bx+c(a≠0)的性質(zhì):a、b、c的代數(shù)式作用說明a1.a的正負決定拋物線開口方向;2.決定拋物線開口
【摘要】二次函數(shù)y=ax2+bx+c的圖象和性質(zhì)(2)在同一坐標系中畫出下列函數(shù)的圖象:222)1(3;23;3?????xyxyxyoyx23xy?函數(shù)的圖象函數(shù)的圖象232??xy函數(shù)
2024-11-30 04:09
【摘要】中考數(shù)學總復(fù)習第一輪二次函數(shù)的圖像與性質(zhì)陜西科技大學附屬中學蒙燕妮【課前熱身】的開口向__對稱軸是______.頂點坐標是_________.
2024-11-30 02:30
【摘要】第13講┃二次函數(shù)的圖象與性質(zhì)第13講二次函數(shù)的圖象與性質(zhì)考點1二次函數(shù)的定義┃考點自主梳理與熱身反饋┃第13講┃二次函數(shù)的圖象與性質(zhì)二次函數(shù)的定義形如y=ax2+bx+c(a,b,c都是常數(shù),且a______)二次函數(shù)的自變量的取
【摘要】考點聚焦考點1二次函數(shù)的概念一般地,形如________________(a、b、c是常數(shù),a≠0)的函數(shù)稱為二次函數(shù).概念點撥:(1)等號左邊是函數(shù),右邊是關(guān)于自變量x的二次式,x的最高次數(shù)是2.(2)二次項系數(shù)a≠0.考點聚焦歸類探究y=ax2+bx+c(1)若y=(m+1)x
【摘要】二次函數(shù)的圖象和性質(zhì)二次函數(shù)倍速課時學練如圖:正方體的六個面全是全等的正方形如圖,設(shè)正方體的棱長為x,表面積為y.y=6x2①顯然對于x的每一個值,y都有一個對應(yīng)值,即y是x的函數(shù),它們具體的關(guān)系可以表示為倍速課時學練問題1多邊形的對角線數(shù)d與邊數(shù)n
2024-11-30 02:31
【摘要】二次函數(shù)y=ax2的圖象和性質(zhì)xy一.平面直角坐標系:1.有關(guān)概念:x(橫軸)y(縱軸)o第一象限第二象限第三象限第四象限Pab(a,b)2.平面內(nèi)點的坐標:3.坐標平面內(nèi)的點與有序?qū)崝?shù)對是:一一對應(yīng).坐標平面內(nèi)的任意一點M,都有
【摘要】二次函數(shù)的圖象與性質(zhì)皖考解讀皖考解讀考點聚焦皖考探究當堂檢測考點考綱要求年份題型分值預(yù)測熱度二次函數(shù)的概念了解★二次函數(shù)的圖象和性質(zhì)掌握2020選擇題4分★★★2020解答題5分2020選擇題4分2020解答題3
2024-11-30 00:36
【摘要】二次函數(shù)y=ax2+bx+c(a≠0)的圖象2知識與技能:1.學生掌握y=ax2+c與y=ax2的圖象在平面直角坐標系中的位置特點及移動方法;2.學生掌握y=ax2+c的圖象的開口方向、對稱軸、頂點坐標;3過程與方法:通過比較拋物線的相互關(guān)系,培養(yǎng)學生觀察、分析、歸納、總結(jié)的能力;滲透數(shù)形結(jié)
2024-11-29 00:05
【摘要】二次函數(shù)的圖像與性質(zhì)一.拋物線y=ax2+bx+c(a≠0)的性質(zhì):a、b、c的代數(shù)式作用說明a1.a的正負決定拋物線開口方向;2.決定拋物線開口大小。a>0開口向_____a<0開口向_____b決定對稱軸的位置,對稱軸為直線a、b同號對稱軸
2025-07-24 06:24
【摘要】第一篇:二次函數(shù)圖像教案 二次函數(shù)的圖像 略陽天津高級中學楊娜 課型:新授課課時安排:1課時教學目標: 1、理解二次函數(shù)中a,b,c,h,k對其圖像的影響。 2、領(lǐng)會二次函數(shù)圖像平移的研究方...
2024-11-04 17:10
【摘要】各類二次函數(shù)的圖像與性質(zhì)復(fù)習課都川中學王建鋒y=ax2a0a0圖象開口對稱軸頂點增減性二次函數(shù)y=ax2的性質(zhì)開口向上開口向下a的絕對值越大,開口越小y軸頂點坐標是原點(0,0)頂點是最低點頂點是最高點在對稱軸左側(cè)遞減
2024-11-30 00:04
【摘要】探究在同一坐標系中畫出二次函數(shù)的圖象,并考慮它們的開口方向、對稱軸和頂點.x···-3-2-10123······
2024-11-29 01:22
【摘要】 二次函數(shù)圖表信息題一.選擇題(共18小題)1.已知二次函數(shù)y=x2+bx+c的圖象過點A(1,m),B(3,m),若點M(﹣2,y1),N(﹣1,y2),K(8,y3)也在二次函數(shù)y=x2+bx+c的圖象上,則下列結(jié)論正確的是( ?。.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2
2025-03-30 06:25