【摘要】課題:二倍角的三角函數(shù)(2)班級:姓名:學號:第學習小組【【課前預習】1、??2sin;??2cos==;??2tan_______________;
2024-11-27 21:43
【摘要】1第3章三角恒等變換二倍角的三角函數(shù)2二倍角的三角函數(shù)公式22cos1???212sin??????cossinsin22????222sincoscos?????2122tantantan??3(3)8sincoscos
2024-11-26 08:49
【摘要】兩角和與差的正弦、余弦、正切公式????????sincoscossinsin????????????sinsincoscoscos????????????tantantantantan?1???????????sincoscossinsin????
【摘要】任意角的三角函數(shù)(1)【學習目標】1.掌握任意角三角函數(shù)的定義,并能借助單位圓理解任意角三角函數(shù)的定義2.會用三角函數(shù)線表示任意角三角函數(shù)的值3.掌握正弦、余弦、正切函數(shù)的定義域和這三種函數(shù)的值在各象限的符號【學習重點、難點】任意角的正弦、余弦、正切的定義【自主學習】一、復習舊知,導入新課在初
2024-11-28 01:06
【摘要】§(1)§(2)§(2)§(1)§二倍角的三角函數(shù)西鄉(xiāng)中學高一備課組公式例1小結作業(yè)課堂練習引入問題1二倍角的三角函數(shù)精講精練例2知識探究:計算:(1
【摘要】陜西省榆林育才中學高中數(shù)學第3章《三角恒等變形》3二倍角的三角函數(shù)(1)導學案北師大版必修4【學習目標】1.探索、發(fā)現(xiàn)并推導二倍角公式,了解公式之間的內(nèi)在聯(lián)系.2.掌握二倍角公式的特征,靈活應用公式解決與二倍角有關的求值問題.
2024-11-27 23:19
【摘要】3.2二倍角的三角函數(shù)我們知道,兩角和的正弦、余弦、正切公式與兩角差的正弦、余弦、正切公式是可以互相化歸的.當兩角相等時,兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?二倍角公式又有何重要作用呢?1.在S(α+β)中,令________,可得到sin2α=________,它簡記為S
2024-12-13 10:15
【摘要】同角三角函數(shù)的關系(1)【學習目標】1、掌握同角三角函數(shù)的兩個基本關系式2、能準確應用同角三角函數(shù)關系進行化簡、求值3、對于同角三角函數(shù)來說,認清什么叫“同角”,學會運用整體觀點看待角4、結合三角函數(shù)值的符號問題,求三角函數(shù)值【重點難點】同角三角函數(shù)的兩個基本關系式和應用【自主學習】一、數(shù)學
【摘要】課題:任意角的三角函數(shù)(2)一:學習目標1.進一步掌握任意角的正弦、余弦、正切的定義,會用角α的正弦線、余弦線、正切線分別表示任意角α的正弦、余弦、正切函數(shù)值;2.進一步掌握正弦、余弦、正切的函數(shù)的定義域和這三種函數(shù)的值在各象限的符號。二:課前預習(1)已知角?的終邊經(jīng)過點(1,2)?,則cos?的值為_____
2024-12-16 02:41
【摘要】課題:三角函數(shù)誘導公式(2)班級:姓名:一:學習目標導公式;式的探求和運用,培養(yǎng)化歸能力,提高學生分析問題和解決問題的能力.;二:課前預習(1)思想方法:從特殊到一般;數(shù)形結合思想;對稱變換思想;(2)規(guī)律:“奇變偶不變,符號看
2024-12-13 10:17
【摘要】課題:同角三角函數(shù)關系班級:姓名:【學習目標】,并體會它們在三角函數(shù)式的化簡、求值和三角恒等式證明中的應用?!菊n前預習】1、角?的終邊經(jīng)過點(4,3)(0)Paaa??,求?sin和?cos的值。2、你能
【摘要】江蘇省建陵高級中學2021-2021學年高中數(shù)學三角函數(shù)的導學案蘇教版必修4課題:班級:姓名:一:學習目標1.會用三角函數(shù)解決一些簡單的問題,體會三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型。2.觀察函數(shù)圖像,學會用待定系數(shù)法求解析式,能夠?qū)⑺l(fā)現(xiàn)的規(guī)律抽象
2024-12-13 10:16
【摘要】三角函數(shù)的應用【學習目標】:,體會三角函數(shù)是描述周期現(xiàn)象的重要模型..【重點難點】:建立三角函數(shù)的模型一、預習指導1、三角函數(shù)可以作為描述現(xiàn)實世界中____________________________現(xiàn)象的一種數(shù)學模型.2、利用三角函數(shù)解決實際問題的一般步驟:(1)審題,獲取有用信息;(2)構建三角函數(shù)
【摘要】二倍角的三角函數(shù)(1)【學習目標】、余弦、正切公式;、化簡、恒等證明。【學習重點難點】重點:;。難點:理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù)。【學習過程】(一)預習指導:、余弦、正切方式:sin(α+β)=(S???)cos(α+
2024-11-27 12:31