【摘要】{}{}●OABCDM└條件CD為直徑CD⊥ABCD平分弦ABCD平分ABCD平分ADB結(jié)論垂徑定理垂直于弦的直徑平分這條弦,并且平分弦所對的弧.過圓心垂直弦平分弦平分弦所對的弧●OABCDM└條件
2025-01-18 10:36
【摘要】第2課時勾股定理(2)北師大版八年級上冊情景導(dǎo)入情景導(dǎo)入上一節(jié)課,我們通過測量和數(shù)格子的方法發(fā)現(xiàn)了直角三角形三邊的關(guān)系,但是這種方法是否具有普遍性呢?做一做在紙上畫一個直角三角形,分別以這個直角三角形的三邊為邊長向外作正方形。為了方便計(jì)算圖中大正方形的面積,對其進(jìn)行適當(dāng)割補(bǔ):S正方形
2025-03-16 12:44
【摘要】垂徑定理第1課時垂徑定理1.(4分)如圖,在⊙O中,OC⊥弦AB于點(diǎn)C,AB=4,OC=1,則OB的長是()A.3B.5C.15D.17B2.(4分)如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,
2025-07-24 18:26
【摘要】第3章圓的基本性質(zhì)3.3垂徑定理第2課時垂徑定理的逆定理筑方法勤反思第3章圓的基本性質(zhì)學(xué)知識學(xué)知識3.3垂徑定理知識點(diǎn)一垂徑定理的逆定理1平分弦(________)的直徑________,并且平分___________.弦所對的弧不是直徑垂直于弦
2025-06-23 12:04
【摘要】問題:你知道趙州橋嗎?它是1300多年前我國隋代建造的石拱橋,是我國古代人民勤勞與智慧的結(jié)晶.它的主橋是圓弧形,它的跨度(弧所對的弦的長)為,拱高(弧的中點(diǎn)到弦的距離)為,你能求出趙洲橋主橋拱的半徑嗎?趙州橋主橋拱的半徑是多少?實(shí)踐探究把一個圓沿著它的任意一條直徑對折,重復(fù)幾次,你發(fā)現(xiàn)了什么?由此你能得到
2025-08-07 16:34
【摘要】實(shí)踐探究把一個圓沿著它的任意一條直徑對折,重復(fù)幾次,你發(fā)現(xiàn)了什么?由此你能得到什么結(jié)論?圓是軸對稱圖形,判斷:任意一條直徑都是圓的對稱軸()X任何一條直徑所在的直線都是對稱軸。觀察并回答(1)兩條直徑AB、CD,CD平分AB嗎?(2)若把直徑AB向下平移,變成非直徑的弦,弦AB是否一
2025-08-01 05:18
【摘要】2定義與命題北師大版八年級上冊第2課時定理與證明認(rèn)真思考以下句子,并回答下列問題:a.你上課認(rèn)真聽講了嗎?b.同位角相等;c.同角的補(bǔ)角相等;d.作線段AB的中垂線;e.如果a2b2,那么ab;f.對頂角相等;?在命題中哪些是真命題?哪些是假命題?
2025-03-16 13:05
【摘要】課題垂徑定理惠陽區(qū)第四中學(xué)教材分析?教材的地位和作用:本節(jié)課要研究的是圓的軸對稱性與垂徑定理及簡單應(yīng)用,垂徑定理既是前面圓的性質(zhì)的重要體現(xiàn),是圓的軸對稱性的具體化,也是今后證明線段相等、角相等、弧相等、垂直關(guān)系的重要依據(jù),同時也是為進(jìn)行圓的計(jì)算和作圖提供了方法和依據(jù),所以它在教材中處于非常重要的位置。學(xué)情分析?
2024-10-25 10:32
【摘要】1、我們所學(xué)的圓是不是軸對稱圖形呢?.2、我們所學(xué)的圓是不是中心對稱圖形呢?3、填空:(1)根據(jù)圓的定義,“圓”指的是“”,是線,而不是“圓面”。(2)圓心和半徑是確定一個圓的兩個必需條件,圓心決定圓的,半徑?jīng)Q定圓的,二者缺一不可。(3)同一個圓的半徑
2025-08-10 23:38
【摘要】O.CAEBD垂徑定理觀察并回答(1)兩條直徑AB、CD,CD平分AB嗎?(2)若把直徑AB向下平移,變成非直徑的弦,弦AB是否一定被直徑CD平分?ADOCBADOCB思考:當(dāng)非直徑的弦AB與直徑CD有什么位置關(guān)系時,弦AB有可能被直徑CD平分?·
2025-08-11 04:35
【摘要】*垂徑定理...如圖所示,AB是⊙O的一條弦,作直徑CD,使CD⊥AB,垂足為M.(1)右圖是軸對稱圖形嗎?如果是,其對稱軸是什么?(2)你能發(fā)現(xiàn)圖中有哪些等量關(guān)系?說一說你的理由.垂徑定理垂直弦的直徑平分這條弦,并且平分弦所對的弧.已知:如圖所
2025-01-18 10:39
【摘要】問題:你知道趙洲橋嗎?它是1300多年前我國隋代建造的石拱橋,是我國古代人民勤勞與智慧的結(jié)晶.它的主橋是圓弧形,它的跨度(弧所對的弦的長)為,拱高(弧的中點(diǎn)到弦的距離)為,你能求出趙洲橋主橋拱的半徑嗎?趙洲橋的半徑是多少?實(shí)踐探究用紙剪一個圓,沿著圓的任意一條直徑對折,重復(fù)幾次,你發(fā)現(xiàn)了什么?由此你能得
2024-11-27 01:03
【摘要】第2課時勾股定理的應(yīng)用滬科版·八年級數(shù)學(xué)下冊狀元成才路狀元成才路新課導(dǎo)入在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b.(1)a=6,b=8,求c;(2)a=8,c=17,求b.c=10b=15狀元成才路狀元成
【摘要】命題、定理、證明(第2課時)本課學(xué)習(xí)是從以往學(xué)習(xí)的命題出發(fā),指出了定理和證明的概念,并以“在同一平面內(nèi),如果一條直線垂直于兩條平行線中的一條,那么它也垂直于另一條”為例,呈現(xiàn)了一個完整的用符號語言表述的證明過程,來說明什么是證明.并結(jié)合一個反例,說明“相等的角是對頂角”是假命題,讓學(xué)生理解通過反例判斷假命題的方法.課件說明學(xué)習(xí)目標(biāo)
2024-11-29 05:47
【摘要】已知⊙O的半徑為5,弦AB∥CD,AB=6,CD=8,則AB和CD的距離為.測試:.O.OABABCDCDMNMN垂徑定理垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。題設(shè)結(jié)論(1)過圓心(2)垂直于弦
2024-11-27 06:49